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A simple scheme for storage of spin squeezing in a two-component Bose-Einstein condensate is
investigated by considering rapidly turning-off the external field at a time that maximal spin squeezing
occurs. We show that strong reduction of spin fluctuation can be maintained in a nearly fixed direction. We
explain the underlying physics using the phase model and present analytical expressions of the maximal-
squeezing time and the corresponding squeezing parameter.

DOI: 10.1103/PhysRevLett.99.170405 PACS numbers: 03.75.Mn, 05.30.Jp, 42.50.Lc

Spin squeezing has attracted much attention for decades
not only because of fundamental physical interests [1–5],
but also for its possible application in atomic clocks for
reducing quantum noise [2] and quantum information [6–
10]. Formally, the spin squeezing is quantified via a pa-
rameter � � ��Ĵn�min=

��������
j=2

p
, where ��Ĵn�min represents

the smallest variance of a spin component Ĵn � Ĵ � n
normal to the mean spin hĴi. For the coherent spin state
(CSS), the variance ��Ĵn�min is

��������
j=2

p
, i.e., � � 1. If the

mean spin is in the x direction, the spin component with the
reduced variance is in the (y, z) plane. A state is called spin
squeezed state (SSS) if its variance of the spin component
is smaller than that of the CSS, i.e., � < 1.

Kitagawa and Ueda have investigated the spin squeezing
generated by the so-called one-axis twisting (OAT) model
with Hamiltonian: ĤOAT � 2�Ĵ2

z [1]. Possible realization
of the OAT-type spin squeezing in a two-component Bose-
Einstein condensate (TBEC) has been proposed in
Refs. [6,11]. Sørensen et al. also argued that macroscopic
quantum entanglement can be characterized by using the
OAT-type spin squeezing in the TBEC [6]. Besides the
TBEC, Takeuchi et al. recently proposed another realiza-
tion of the OAT-type spin squeezing by using the interac-
tions between atoms and off-resonant light (paramagnetic
Faraday rotation) [12]. To coherently control spin squeez-
ing, Law et al. introduced an additional Josephson-like (or
Raman) coupling to the OAT model: ĤR � 2�Ĵ2

z ��RĴx
[13]. Such a model has also been used to prepare arbitrary
Dicke states [14].

In addition to the generation of the SSS itself, it is
desirable to maintain not only the squeezing but also its
direction for a long time [7]. Jaksch et al. have shown that
the OAT-type SSS can be stored for an arbitrarily long time
by removing the self-interaction [15]. However, it might
not be easy to handle in experiment since the precisely
designed additional pulses are crucially required. In this
Letter, we propose a simple mechanism to obtain long-
lasting spin squeezing in the TBEC. Our scheme is quite
easy to realize in experiment since it can be achieved by
turning-off the Josephson coupling once the TBEC reaches
its maximal spin squeezing. More importantly the storage

is achieved even though the inherent self-interaction
among atoms persists.

We consider a two-component weakly interacting BEC
[16,17] consisting of N atoms in different atomic hyperfine
states jai and jbi coupled by a time-varying microwave
field with Rabi frequency �rf . Based on the two-mode
approximation [18–23], the total Hamiltonian can be de-
scribed by (@ � 1):

 Ĥ�t� � 2�Ĵ2
z ���t�Ĵx; (1)

where � � ��aa � �bb � 2�ab�=4, and ��� �
g��

R
d3rj���r����r�j2, with g�� � 4�a��=m (�, � �

a, b) being the s-wave scattering strengths between atoms.
The normalized condensate-mode functions �� satisfy
coupled Gross-Pitaevskii equations [24]. Here we focus
on the case that the external field is turned off rapidly at
a time tM so that the time-dependent Josephson-like cou-
pling can be written as ��t� � �R��tM � t�, where �R �
�rf

R
d3r��a�r��b�r� and ��t� is the step function.

The state vector at arbitrary time t can be expanded in
terms of eigenstates of Ĵz: j �t�i �

P
mcm�t�jj; mi, where

�j � m � j and j � N=2. The equations of motion for
the amplitudes cm�t� are obtained by solving the time-
dependent Schrödinger equation. We consider an initial
CSS jj;�jix � e�i�Jy=2jj;�ji, then the initial amplitudes

 cm�0� �
��1�j�m

2j
2j

j�m

� �
1=2
:

Our initial CSS satisfies c�m�0� � cm�0� for even N, and
c�m�0� � �cm�0� for odd N, from which we will prove
that the mean spin appears always in the x direction. In
addition, we will consider only positive � case by assuming
aaa � abb > 2aab. However, our results keep valid for
negative � if jj; jix is exploited as an initial state.

Now let us briefly explain the basic principle of our
scheme. The initial CSS is prepared by applying a short
�=2 pulse to a single-component BEC with all the atoms
being in the internal ground state jai [6,23]. After that, the
external Josephson coupling is immediately switched on,
so the dynamics of the TBEC is governed by the
Hamiltonian (1) with ��t� � �R. The squeezing parame-
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ter � rapidly decreases to the first local minimum �M at the
maximal-squeezing time denoted as tM, and then exhibits
collapsed oscillations [25] as shown by the dashed curve in
Fig. 1. If the coupling is optimally chosen, the Josephson
interaction results in further enhancement of the spin
squeezing compared with that of the OAT [13]. The opti-
mal coupling, defined as �R at which the first local mini-
mum �M is optimized, depends on the number of atoms,
e.g., �M � 8:7076	 10�2 at �R � 10:8� for N � 103.
We find that if we turn off the Josephson field at the time
tM, the maximal squeezing �M can be stored in a fixed
direction (i.e., �min � 0). The basic features of our scheme
are exhibited by the solid lines of Fig. 1. It is nontrivial to
explain such a result since neither does Ĵn commute with
the Hamiltonian 2�Ĵ2

z nor is the SSS at tM an eigenstate of
Ĵ2
z .
To understand the above observation, we investigate

probability distribution of the spin state, jcmj2 �
jhj;mj �t�ij2. As shown in the insets of Fig. 2, we find
that compared with the initial CSS, the maximal SSS at tM
has a very sharp probability distribution centered at the
lowest spin projection, i.e., m � 0 (for even N) or m �

1=2 (for odd N). Such a sharp probability distribution of
the SSS can be explained qualitatively by considering the
familiar phase model [26]. By replacing Ĵz ! p�̂ � �i@�̂
and Ĵx ! �N cos�̂�=2, with �̂ being the macroscopic
phase difference between two condensate components,
one obtains the following Hamiltonian

 H�̂ � �2�
@2

@�̂2
�

�RN
2

cos�̂: (2)

The phase model allows us to regard the spin system as the
fictitious particle with effective mass �4���1 subjected to a
pendulum potential. The motion of the particle can be

described as the rotation in phase space (�, p�) in terms
of a Wigner distribution function.

As shown in Fig. 2, starting from vertically elongated
distribution, one obtains the distribution elongated hori-
zontally at the time t ’ T=4, where the period T �
2�=!eff and !eff �

�����������������
2��RN

p
. Based upon the phase

model, one can intuitively understand why the SSS at tM
has a sharp distribution. Moreover, we obtain analytical
expression of the maximal-squeezing time

 �tM ’ �
T
4
�
�
2

��������������
�

2�RN

s
; (3)

which is valid for large N (�103). It should be noted that
tM given in Eq. (3) corresponds not necessarily to the time
that � is minimized but rather to the time that the distri-
bution is sharp in terms of p�. Only for �R near or larger
than the optimal coupling, it provides the maximal-
squeezing time, which will be discussed in detail below.
Compared with the exact numerical result, we find Eq. (3)
gives accurate prediction of the maximal-squeezing time
for wide range of �R. For example, with N � 103 and
�R � 10:8� (the optimal coupling), Eq. (3) predicts
�tM � 1:069	 10�2, which agrees quite well with
1:104	 10�2 obtained numerically.

If the external field is turned off at tM, the spin system is
governed only by the self-interaction Hamiltonian 2�J2

z .
Therefore, the amplitudes jcm�t�j’s are conserved while the
relative phases among the spin projections are subjected to
change. It is found when the SSS exhibits a very sharp
distribution in m as shown in the inset of Fig. 2(b), the
relative phases have negligible influence on the spin
squeezing. To show this, we suppose the SSS at tM takes
the form

 j �tM�i �
ei’ sin����

2
p �jj; 1i � jj;�1i� � cos�jj; 0i (4)

for even N, orξ

π

π

π

θ

κ

FIG. 1. Time evolution of (a) the squeezing parameter, (b) the
squeezing angle, and (c) the mean spin hJxi for the optimal
coupling �R � 10:8� with N � 103. Dashed curves: the
constant-coupling case; solid curves: the case for turning-off
the coupling at the time tM indicated by the vertical dotted line.
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FIG. 2. Schematic picture of the probability distribution in
phase space (�, p�) for (a) the initial CSS and (b) the SSS at
t � T=4. The insets: the corresponding distribution jcmj2 as a
function of m (or p�) obtained numerically with the parameters
used in Fig. 1.
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j �tM�i �
ei’ sin����

2
p �jj; 3=2i � jj;�3=2i�

�
cos����

2
p �jj; 1=2i � jj;�1=2i� (5)

for odd N, where � describes the amplitude and ’ repre-
sents the relative phase difference induced by the self-
interaction. Figure 3 presents the squeezing parameter �
as a function of � and ’, where two distinct features are
observed. First, � is minimized as �! 0 [2], which im-
plies that the maximal squeezing occurs when the SSS is
dominated by the lowest spin projection: i.e., m � 
1=2
for odd N, or m � 0 for even N. Second, � is rather
insensitive to the relative phase difference ’. Remember
that the self-interaction makes only ’ vary but � is kept
almost fixed. This explains our scheme for the storage of
spin squeezing.

We check the above argument in two exactly solv-
able cases with N � 2 and N � 3. Taking the optimal
coupling �R � � for N � 2 and �R � 2� for N � 3,
we get the maximally squeezed states j �tn�i �
�i��1�n�1e�i�tn jj � 1; m � 0i [2] and j �tn�i �
i��1�n��

2
p e�3i�tn=2�j3=2; 1=2i � j3=2;�1=2i�, respectively,

where tn � �2n� 1��=S with an integer n, and S �

2
�������������������
�2
R � �

2
q

for N � 2 and S � 2
����������������������������������������
�2
R � 2��R � 4�2

q
for N � 3. Since the spin squeezed state j �tn�i is the
ground state of Ĵ2

z , the rapid switching-off the external
field at tn obviously results in constant � with �min � 0.
Even though for larger N the SSS at tM no longer lies at the
ground state of Ĵ2

z , almost constant � can also be achieved
as long as the distribution is sharp enough as explained
above.

It does not depend on �R whether the storage itself can
be achieved or not in our scheme. For �R near or larger
than the optimal coupling the maximal squeezing can be
stored. Whereas for �R smaller than the optimal coupling
it is found that there exist two time scales: tM at which
turning-off the field leads to the storage, and namely �M at
which the maximal squeezing occurs. Equation (3) still
works very well to give tM, but fails to predict the

maximal-squeezing time. It is shown in Fig. 4(a) that for
�R � 5� true maximal squeezing occurs at �M � 6:915	
10�3��1, while the storage is achieved when turning-off
the field at tM � 1:687	 10�2��1 at which the probability
distribution of the SSS appears to be sharp [see the inset of
Fig. 4(b)]. As a result, nonmaximally squeezed variance is
stored by turning-off the external field at the time tM [see
the red curves of Fig. 4(a)].

Interestingly it is found in Figs. 1(a) and 4 that at tM the
squeezing angle �min is always equal to zero, which can be
explained by considering the phase model again. The
average hcos�i over the distribution in Fig. 2 as time
goes monotonically increases and turns to decrease at tM
since cos� is an even function on � � �. Consequently
hcos�i has its local maximum at tM. Considering the
relation Ĵx � �N cos�̂�=2, it is found that dhĴxi=dt /
dhcos�̂i=dt � 0 at tM (see also hJxi in Figs. 1 and 4). It
leads us to �min � 0 due to �min / tan�1�A�1dhĴxi=dt� for
A � 0 (see below). Consequently tM provides not only the
time when �min is equal to zero, but also the time when the
distribution becomes very sharp.

Our explanation for the storage of spin squeezing should
be applied with great care to the SSS with a rather broad
probability distribution. In fact, typical OAT scheme [1]
relies solely on the evolution of relative phases induced by
the self-interaction, where the initial CSS shows a broad
probability distribution. As shown by the red line of
Fig. 4(b), for a large coupling �R � 50�, the squeezing
parameter decreases slightly after turning-off the external
coupling. This is because the SSS at tM exhibits a relatively
broad probability distribution [see the inset of Fig. 4(b)].
As mentioned above, the squeezing angle is also main-
tained at zero as shown by the green curve in Fig. 4(b).
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FIG. 3. The squeezing parameter � as a function of � and ’ (in
units of �) for (a) the even number case (N � 1000); (b) the odd
number case (N � 1001), calculated by using Eqs. (4) and (5),
respectively. Note that the scale of �’s differ for (a) and (b)
although the difference in N is tiny.

FIG. 4 (color). Time evolution of �, �min, and hĴxi=j for N �
103 with (a) �R � 5� and (b) �R � 50�. In both (a) and (b) the
red and the green curves represent � and �min for the case of
turning-off the coupling at tM, while the black curves denote
them for constant-coupling case. tM and �M are defined in the
text. The inset: the probability distribution of the SSS at �M in (a)
(the black curve), at tM in (a) (the blue curve), and in (b) (the red
curve).

PRL 99, 170405 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
26 OCTOBER 2007

170405-3



Equation (3) still gives a fairly good estimation of tM �
4:967	 10�3��1 compared with the numerical one
4:945	 10�3��1.

Before closing, we provide several mathematical deri-
vations supporting the above argument. The linear combi-
nations of the probability amplitudes p�
�m �t� � cm�t� 

c�m�t� obey two closed sets of first-order ordinary differ-
ential equations. For even N, the fact that all p���m �0� � 0

results in p���m �t� � 0, namely, c�m�t� � cm�t�. On the
other hands, for odd N all p���m �t� are zero, i.e., c�m�t� �
�cm�t�. Since c�m�t� � 
cm�t�, we obtain simple expres-
sions: hĴyi � hĴzi � 0, and hĴxi � 0, i.e., the mean spin is
along the x direction. Consequently, the spin component
normal to the mean spin reads Ĵn � Ĵy sin�� Ĵz cos�. By
minimizing the variance ��Ĵn�

2 with respect to �, we
obtain the squeezing angle �min �

1
2 tan�1�B=A� and

��Ĵn�
2
min �

1
2C�

1
2

������������������
A2 � B2
p

, where A � hĴ2
z � Ĵ

2
yi, B �

hĴzĴy � ĴyĴzi, and C � hĴ2
z � Ĵ

2
yi. From Heisenberg equa-

tions of motion of the spin Ĵ� for � � x, y, z, one can
obtain formal solutions for the constant-coupling case:C�
j�j�1��hĴ2

xi, A � �C� j�1��R=�� � ��R=��hĴxi,
and B � ��2���1dhĴxi=dt. Note that for B � 0 and A �

0, the spin squeezing takes place along z axis (i.e., �min �
0) with the corresponding squeezing parameter

 �2
M � 1� ��R=���1� hĴxiM=j; (6)

where hĴxiM is the maximum value of the mean spin. For
an extremely strong coupling (�R � �N), hĴxiM ! �j
and �M ! 1 so the squeezing becomes very weak. This
is the reason why we discuss the spin squeezing in the
small-coupling regime (� <�R � N�).

Finally, we estimate several important parameters for
experimental realization. Following Ref. [6], we consider
23Na atoms in the hyperfine states jF � 1;MF � 
1i
trapped in a spherically symmetric potential Va � Vb �
m!2r2=2. The self-interaction strength can be solved by
applying the Thomas-Fermi approximation, yielding

 � ’
152=5

@!
14

aeff

a0

�
a0

Naaa

�
3=5
; (7)

where a0 �
�������������
@=m!

p
is the harmonic oscillator length and

aeff � aaa � abb � 2aab the effective scattering length.
For 23Na atoms, we take aaa � abb � 1:076aab [27] and
aeff � 0:15aaa � 0:41 nm [17], then the self-interaction
strength � ’ 4:87	 10�5

@!. For the case N � 103 and
�R � 10:8�, we have obtained tM � 1:1041	
10�2=�@�1�� � 226:9!�1, which corresponds to the
maximal-squeezing time about 72.2 ms for ! �
2�	 500 Hz.

In summary, we have investigated the coherent control
of spin squeezing of TBEC with the time-dependent
Josephson coupling induced by a microwave electromag-
netic field. By rapidly turning-off the external driving at the

time when the maximal squeezing occurs, the spin squeez-
ing parameter can be maintained with its direction fixed
along the z axis. In such a scheme, the storage of the spin
squeezing is achieved even though the inherent self-
interaction among atoms in a BEC still exists. We find
the analytical expression of the maximal-squeezing time
by considering phase model. Our scheme for the storage of
spin squeezing is quite robust for wide range of parameters.
We hope our scheme will be realized in experiment near
future.
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