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We show that, in principle, N-partite unitary transformations can be perfectly discriminated under local
operations and classical communication despite their nonlocal properties. Based on this result, some
related topics, including the construction of the appropriate quantum circuit together with the extension to
general completely positive trace preserving operations, are discussed.
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Superposition plays the central role in quantum mechan-
ics, and puts many constraints on physically accessible
transformations on quantum states. For instance, it is
well-known that two pure states cannot be perfectly dis-
criminated unless they are orthogonal [1]. Quantum states
discrimination is an interesting problem in quantum infor-
mation science, and has been extensively studied.
However, things become very different when we refer to
quantum operations. It was proved [2,3] that two nonor-
thogonal unitary operations U and V can be perfectly
discriminated if we can run the selected unitary gate a
finite number (k) of times in parallel and prepare a suitable
input state j�i (h�j�UyV��kj�i � 0). This result is sur-
prising and nontrivial, since for quantum states j 1i and
j 2i, if h 1j 2i � 0, then j 1i

�k and j 2i
�k cannot be told

apart unless k! 1. Therefore, studying the distinguish-
ability of quantum operations is an interesting problem.

In the original work of Refs. [2,3], the input state j�i is
usually an entangled state. This becomes very common
when the considered unitary transformations U and V act
on many particles. Although quantum entanglement has
been widely studied and viewed as a significant resource
for quantum information processing, how to prepare multi-
partite entangled states efficiently in a typical experimental
setup remains a great challenge to current technology. For
example, in atomic system, spontaneous emission can
destroy quantum correlation, and usually the disentangle-
ment rate is the sum of the decay rate of individual atoms
[4]. In the linear optical regime, experimental preparation
of multiqubit entangled states is still a difficult and active
area [5]. Therefore, one natural problem arises-whether it
is possible to identify two different unitary operations only
with local methods.

In this work, we consider to discriminate two multi-
partite unitary transformations under local operations and
classical communications (LOCC). Compared with its
counterpart, i.e., local identification of quantum states,
which is often considered for orthogonal states [6,7], we
find that any two unitary transformations can be perfectly
identified locally despite their nonlocal properties.

Let us make a few remarks about the differences be-
tween the discrimination of quantum states and that of

quantum operations. Generally to identify a quantum state,
one should make a measurement on the given state fol-
lowed by an estimation. Such a process usually destroy the
input states which thus cannot be used any more. However,
things become different when we refer to quantum opera-
tions. The reason lies in the fact that quantum operations
never collapse, and in principle it can be repeated any
number of times as needed. What’s more, when unitary
operations are considered, by exchanging the input and
output ports of the whole setup we can obtain the reverse
transformations. Actually, these facts make the discrimi-
nation of quantum operations very different from that of
quantum states.

Generally the operation identification strategy can be
formulated as this: we employ a quantum circuit f�U�
which is made up of the selected operation U (or V) on a
suitable input state �s;a, where s�a� denotes the circuit
system (auxiliary system). If only local methods are re-
quired, �s;a must also be separable. To obtain the maximal
distinguishability, the overlap of the output states should be
as small as possible for different quantum operations.
Figure 1 shows the sketch of the identification process
under LOCC. To simplify our consideration, in the follow-
ing we mainly focus on bipartite system.

Let us begin with some simple observations. Here we
mainly concentrate on unitary operations; one can check

FIG. 1. Illustration of the identification of unitary transforma-
tions under local operations and classical communication. Alice
and Bob input a locally implemented state �AA0;BB0 to a quantum
circuit f�U�. After some local measurement operations on the
output, the results are transmitted through classical channels to
implement a perfect discrimination process.
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that some of the discussions are also suitable for general
quantum operations. As mentioned above, to realize per-
fect identification operation, one needs to find a suitable
input state such that the corresponding output states are
orthogonal to each other for different selected operations.
Assume that we want to discriminate two unitary opera-
tions U and V. By inputting a locally implemented quan-
tum state �AA0;BB0 �

P
i�i�

i
AA0 � �

i
BB0 , we conclude that the

two output states �U � �U � IA0B0 ��AA0;BB0 �Uy � IA0B0 � and
�V � �V � IA0B0 ��AA0;BB0 �Vy � IA0B0 � should be orthogonal
to each other. Now consider the spectral decompositions of
�iAA0 �

P
jrjjr

i
ji�AA0�hr

i
jj and �iBB0 �

P
kskjs

i
ki�BB0�hs

i
kj. The

requirement of �U ? �v is equivalent to �U �

IA0B0 �jr
i
jiAA0 js

i
kiBB0 ? �V � IA0B0 �jr

i0
j0 iAA0 js

i0
k0 iBB0 for any i,

i0, j, j0, k, k0. This observation shows that, in general, a
pure input state jriAA0 jsiBB0 is enough to discriminate two
unitary operations. Moreover, since two orthogonal pure
states can be locally identified [6,7], in this case U and V
can also be discriminated with local methods.

The above discussion shows that, to distinguish two
unitary operation locally, one should find a suitable sepa-
rable state as the input. Before concentrating on the spe-
cific topics, let us consider several simple examples.

Suppose two unitary transformations UAB and VAB with
zero overlap, i.e., Tr�VyABUAB� � 0. Then by preparing the
following input state

 j�iAB;A0B0 � j�iAA0 � j�iBB0 ; (1)

where j�iAA0 �
P
ijiiAji

0iA0 (or j�iBB0 �
P
ijiiBji

0iB0) is a
non-normalized entangled state between the system A and
the corresponding local environment A0 (or B and B0).
Since

 h�jVyABUAB � Ij�i � Tr�VyABUAB� � 0; (2)

one immediately obtains that the two output states UAB �
Ij�iAB;A0B0 and VAB � Ij�iAB;A0B0 are orthogonal, and hence
can be locally discriminated perfectly. Equations (1) and
(2) can be viewed as the extension of Jamiolkowski iso-
morphism in the local case [8]. The input state j�iAB;A0B0 is
universal for any two operations U and V satisfying
Tr�VyU� � 0.

In the above case, a perfect identification is possible
after a single run. Generally one needs to run the selected
gate k times (k is finite). In the global case, the optimal k
has been presented in Refs. [2,3], which asserts that if the
minimal arclength � spread by the eigenvalue of �UyV��k

in the circle jzj � 1 is not less than �, then a perfect
discrimination scheme is allowed. Now assume UyV �
U1 �U2, and �1, �2 are the minimal arclengths ofU�k1 and
U�k2 , respectively. If only local input states (e.g., jrijsi) are
allowed, since
 

hrjU�k1 jrihsjU
�k
2 jsi � 0, hrjU�k1 jri � 0

or hsjU�k2 jsi � 0;
(3)

to distinguish U and V locally, at least one of the two
arclength �1 and �2 must be not less than �. Therefore,
generally in the local case the optimal running times k of
the selected operation should be greater than that of the
global case (in the global case, we have �1 � �2 � �).

More generally, suppose UyV � �U1 �U2��
�P1 � I � P2 � u� with PiPj � �ijPi and

P
iPi � I. If

U2 � uy, then by inputting an appropriate state j iAj iB
with j iA lying in the support of P1, UyV is equivalent to
the local transformation �uU2�j iB, and hence the two
unitaries can be perfectly identified. Especially whenU1 �
U2 � I, one can find that the eigenvalues of �UyV��k

belong to the set f1; b1; b2; . . .g with bi and jbii being the
eigenvalues and eigenvectors of u�k separately. If only
local input state �A � �B � Tr�j AA0 ih AA0 j � j BB0 i �
h BB0 j� is permitted, then

 Tr ��UyV��k��A � �B�	 � x� �1
 x�
X

i

bihbij�Bjbii;

(4)

where x � Tr�P1�A� � 0 can be chosen arbitrarily by
inputting appropriate �A. In order to make the right-hand
side of Eq. (4) to be zero, one can easily obtain that the
minimal angular spread of f1; b1; b2; . . .g should be not less
than �. Therefore, in this case the minimal k required
equals to that of the global case.

In the above discussions, we have considered discrimi-
nating several special kinds of unitary transformations.
They all can be perfectly identified and the corresponding
quantum circuits and input states can be easily obtained. In
the following, we mainly focus on the most general case.
Although we cannot present the optimal quantum circuits
and input states, we prove that, in principle, any two
unitary operations U and V can be perfectly identified
locally.

Following Refs. [9,10], we call a two-qudit gate UAB to
be primitive if UAB maps a separable state to another
separable state; otherwise, UAB is imprimitive. Generally,
a primitive gate UAB can be expressed as the product of
one-qudit gate up to a swap operation P, namely, UAB �
UA �UB or UAB � UA �UBP with Pj�iAj�iB �
j�iAj�iB. For simplicity, in the following, we use H to
denote the set of all two-qudit gates of the form UA �UB.
Under these assumptions, we then introduce the following
lemma.

Lemma 1.—H together with an imprimitive gate U can
generate the unitary groupU�d2�, where d is the dimension
of the qudit Hilbert space.

A detailed proof of this lemma can be found in Ref. [10],
which is used to study the university of quantum gates.
This lemma indicates that if U and all local unitary trans-
formations are permitted, we can then construct H0 �
UHU
1. By choosing a suitable sequence of H and H0,
we can obtain any desired elements inU�d2�. The sequence
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is finite; therefore, we only need to run the imprimitive gate
a finite number of times.

Based on this lemma, we now prove the main theorem of
this work.

Theorem 1.—Any two unitary transformation UAB and
VAB can be perfectly identified with local methods.

Proof.—Following our former discussions, we obtain
that if both UAB and VAB are primitive, then they can be
perfectly discriminated locally.

Now assume that only one of the two unitary gates is
primitive. Without loss of generality, we suppose VAB to be
imprimitive. According to the lemma, we obtain that there
exists a quantum circuit f�VAB�made up of the elements in
H andH0 � VABHV

y
AB such that f�VAB� 2 �HH0�n is some

control-unitary transformation. On the other hand, since
UAB is primitive, which means H0 � UABHU

y
AB � H, one

immediately obtains that f�UAB� is also primitive. Because
f�UAB� � f�VAB�, it follows that the two unitary opera-
tions can be locally identified.

If UAB and VAB are both imprimitive, following the
lemma, we obtain that there is a quantum circuit such
that f�UAB� � eiL

A
12�L

B
12 with �LA12�ij � �i1�j2 � �i2�j1

[or �LB12�ij]. If f�VAB� is primitive, then perfect local dis-
crimination can be realized. Otherwise, both f�UAB� and
f�VAB� are imprimitive. Since f�UAB�

y � Af�UAB�Ay

with A � diagf�z; I�d
2�g � I, I � diagf�z; I�d
2�g,
diagf�y; I�d
2�g � I, or I � diagf�y; I�d
2�g [I�d
2� is the
identity operation in the �d
 2�-dimensional Hilbert
space], one can easily check that if the similar result can
be obtained for VAB, then f�VAB� can be expressed as
f�VAB� � eixL

A
12�L

B
12 for some x 2 R. Therefore the whole

question can be divided into the following two parts:
(i) If f�VAB� � eixL

A
12�L

B
12 for any x 2 R, then by em-

ploying the transformation Af���Ayf���, we can obtain an
identity operation for UAB. Because Af�VAB�Ayf�VAB� �

I, the two operations thus are locally distinguishable.
(ii) If f�VAB� � eixL

A
12�L

B
12 , then when x � 1, f�UAB� and

f�VAB� can be reduced to eiL
A
12 � I and eixL

A
12 � I by input-

ting a product state j�ij iwith j i being an eigenvector of
LB12, which, therefore, can be perfectly identified locally by
running the circuit a finite number of times in parallel.
Otherwise we have f�UAB� � f�VAB�. Since eiL

A
12�L

B
12 is

imprimitive, it can be used to construct the desired operator
UyAB. Thus the original problem is reduced to the local
identification of I and UyABVAB, which can be implemented
perfectly.

This completes the proof.
The above theorem shows that, in principle, to realize a

perfect local identification we only need to run the selected
unitary operation a finite number of times. Although we
have assumed that the two subsystems A and B have equal
dimensions, one can easily obtain that the same result
holds even when A and B have different dimensions. For
example, if dimH A < dimH B, then by introducing an-

other subsystem A1 in Alice’s side such that dimH A �

dimH A1
� dimH B, we can obtain two extended unitary

transformations U � IA1
and V � IA1

, which thus can be
identified with the methods described above [11].

From the practical viewpoint, it will be valuable if one
can provide an optimal circuit to implement such kinds of
identification operations [12]. Generally, it is not easy to do
this. Here, to simplify our consideration, we take two-qubit
gates as an example.

For any two-qubit unitary transformation U, it has the
following canonical decomposition [13]:

 U � �U1 �U2�e
i�hx�x��x�hy�y��y�hz�z��z��U3 �U4�; (5)

where �x, �y, �z are the usual Pauli matrices, Ui are local
single-qubit gates, and �=4 � hx � hy � jhzj. Benefitting
from the nice decomposition (5), one need not to reverse
the whole setup because Uy can be constructed from U
directly. Now suppose we have two unitary operations U
and V. After applying the selected gate at most two times,
we can transform one of them, e.g., U, into f�U� �
eih

U
x �x��x . If f�V� � eih

V
x �x��x for some hVx 2 R, we can

employ the manipulation g��� � Af���Ayf��� (A � �y � I,
�z � I, I � �y, or I � �z) to reduce the original U and V to
I and g�V�, respectively. Similarly, by running g�V� at most
four times, we can then obtain two local unitary trans-
formations U0 and V0. One can easily check that by choos-
ing suitable single-qubit gates, U0 and V 0 can always be
different. Therefore, after repeating the selected gate at
most 20 times, we obtain two local gates, which can be
perfectly implemented with the methods described above.

The same question can also be investigated in the multi-
partite case. To answer this problem, we should introduce
the generalized version of the primitive gates (see Ref. [14]
for technique details). We call U12...N
f�is; . . . ; ie	; . . . ; �js; . . . ; je	; . . .g-primitive if U12...N to-
gether with all single-qudit gates can generate the group
U� � Uis...ie � . . . �Ujs...je . Similarly, if U� � U�dN�,
then U12...N is imprimitive. Following the same routine as
in Ref. [10], we can obtain that a
f�is; . . . ; ie	; . . . ; �js; . . . ; je	; . . .g-primitive gate can be ex-
pressed as Uis...ie � . . . �Ujs...jePf�is;...;ie	;...;�js;...;je	;...g, where
Pf�is;...;ie	;...;�js;...;je	;...g is a permutation operator which pre-
serves the structure of the partition
f�is; . . . ; ie	; . . . ; �js; . . . ; je	; . . .g. For example, if U12 345 is
f�1; 2	; �3; 4	; 5g-primitive, then Pf�1;2	;�3;4	;5g � P12;34 � I5

or I12 345, where P12;34 is the swap operation between
Hilbert spaces H 1 �H 2 and H 3 �H 4; if U12 345 is
f1; 2; 3; 4; 5g-primitive, then Pf1;2;3;4;5g can be any element
in the permutation group S5.

We take three-partite unitary transformations as an in-
stance. According to the above discussion, if one of the two
three-partite unitary transformations UABC and VABC is
fA;B;Cg-primitive, then a perfect local identification is
possible. If both of the two selected transformations are
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imprimitive, then there exists a sequence f�UABC� �

�H0H� . . . �H0H� with H0 � UABCHU
y
ABC, such that

f�U� � eiL
A
12�L

B
12�L

C
12 . Following the discussion of bipartite

case, we conclude that UABC and VABC can be locally
discriminated. Finally, if UABC is f�A;B	; Cg-primitive
with VABC being fA; �B;C	g-primitive, then there exists a
circuit such that f�UABC� � �UA1

� PB1
�UA2

� PB2
� �

UC and f�VABC� � VA � VBC, where (UA1
� PB1

�UA2
�

PB2
) is a control-unitary transformation. Since UA1

� VA
or UA2

� VA, by choosing suitable input state, the original
problem can be reduced to the discrimination of two differ-
ent local unitary manipulations, and hence can be imple-
mented perfectly.

The above discussion can be extended to N-partite case,
and we have that it is always possible to discriminate two
unitary operations locally, although in general we need to
run the selected operation many times. Interestingly, unlike
the previous results for quantum states, where ‘‘the hidden
entanglement’’ plays a very important role, it seems that
the nonlocality of unitary transformations does not affect
the distinguishability much (in this work, it only changes
the total run times k). We can also generalize this result to
the case of M unitary transformations. To discriminate the
selected operation from others, we should perform M
 1
tests; after each test, one of the M operations can be ruled
out. Therefore a perfect local identification is possible after
a finite number of runs.

One can also consider the same problem for nonunitary
transformations [15]. For general completely positive trace
preserving operations 	1 and 	2, the reverse transforma-
tions do not always exist unless they are unitary. Moreover,
the output states usually are mixed even if we employ a
pure input state, and 	1, 	2 may contain common Kraus
operators. To realize a perfect identification process, these
components should be ruled out. Totally solving this prob-
lem seems to be quite complicated.

To summarize, we have shown that multipartite unitary
transformations can also be discriminated perfectly with
local methods. Nonlocal schemes together with entangled
input states usually can improve the efficiency of the
identification process; i.e., we can run the selected opera-
tions fewer times. However, it does not affect the distin-
guishability of the whole problem. In principle, by running
the secretly chosen operations a finite number of times, we
can also discriminate them perfectly under LOCC. From
the practical viewpoint, one need to provide an optimal
method to implement the discrimination procedure. Our
investigation indicates that this question has a close rela-
tion to the exact universality of unitary evolution and the
optimal quantum circuits in d-level systems [16].
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