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It has been hypothesized that stationary scroll wave filaments in cardiac tissue describe a geodesic in a
curved space whose metric is the inverse diffusion tensor. Several numerical studies support this
hypothesis, but no analytical proof has been provided yet for general anisotropy. In this Letter, we derive
dynamic equations for the filament in the case of general anisotropy. These equations are covariant under
general spatial coordinate transformations and describe the motion of a stringlike object in a curved space
whose metric tensor is the inverse diffusion tensor. Therefore the behavior of scroll wave filaments in
excitable media with anisotropy is similar to the one of cosmic strings in a curved universe. Our dynamic
equations are valid for thin filaments and for general anisotropy. We show that stationary filaments obey
the geodesic equation.
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Introduction.—Scroll waves in excitable media are an
important example of three-dimensional self-organization.
They have been observed in a wide range of systems,
including the Belousov-Zhabotinsky reaction [1], the slime
mould Dictyostelium discoideum [2], and cardiac tissue
[3,4]. In the latter, scroll waves of electrical excitation
have been associated with cardiac arrhythmias and ven-
tricular fibrillation [5]. Understanding the dynamics of
scroll waves is therefore likely to improve the current
therapies for cardiac arrhythmias.

Cardiac tissue consists of interconnected cells that have
more end-to-end than side-to-side connections, leading to a
complicated fibrous structure. The electrical conductivity
is much higher along than across muscle fibers, making
cardiac tissue highly anisotropic for electrical propagation
[6]. Several numerical studies have been dedicated to the
role of tissue anisotropy on the dynamics of scroll waves
[7–10]. Recently, Wellner et al. performed a study of sta-
tionary scroll wave filaments [11], the organizing centers
around which the excitation waves rotate. They postulated
a minimal principle, such that stationary filaments describe
geodesics in a three-dimensional space whose metric is
given by the inverse diffusion tensor of the medium. Ten
Tusscher and Panfilov reformulated this principle using the
Hamilton-Jacobi theory and showed that the geodesic is
equivalent to the shortest path for wave propagation
through the medium [12]. The minimal principle was
verified numerically for specific examples of anisotropy
in cardiac tissue [11,12]. However, it still lacks an analyti-
cal proof.

In this Letter, we provide an analytical derivation of the
dynamic equations for thin filaments in anisotropic media.
Our approach is inspired by a similar problem found in
cosmology: the calculation of the motion of cosmic strings
in curved space time (see [13] and references therein). In
this case, the string equations can be deduced in leading
order by expanding the action in a small dimensionless

parameter �, which is essentially the ratio of the string
width and its radius of curvature. From a topological point
of view, scroll waves in excitable media are similar to
cosmic strings. However, one major difference prevents
the direct application of the above-mentioned method to
the current problem: excitable media are dissipative sys-
tems, for which no action principle has been formulated.

We work in the same regime as Wellner et al. [11], where
two-dimensional spiral waves have a circular core. First,
we construct a comoving curvilinear coordinate system,
with one axis oriented along the filament, in which the
metric is locally Euclidean in the plane orthogonal to the
filament. Second, we expand the scroll wave solution in �,
the ratio of the width of its filament (a measure of the core’s
diameter), and its radius of curvature. We then calculate, in
the comoving frame of reference, the scroll wave’s motion
in leading order by substitution of our expansion in the
system equations. The obtained dynamic equations are
fully covariant under general spatial coordinate transfor-
mations and provide a generalization of earlier work on
isotropic cardiac tissue [14,15]. For stationary filaments,
our dynamic equations reduce to the geodesic equation.

Comoving curvilinear coordinates.—Excitable media
are commonly described by means of a reaction-diffusion
equation:

 @tu � @i�Dij@jP̂u� ���u� (1)

where u is a vector of state variables, � are nonlinear
functions that determine the dynamical properties of the
system, and D represents the diffusion tensor of the me-
dium. The projection operator P̂was inserted to ensure that
only one component (the electrical potential) diffuses, as is
the case in myocardial models. The 3D scroll wave solu-
tion us� ~x; t� satisfies (1).

In an isotropic 2D medium (DAB � �AB with A, B � 1,
2), Eq. (1) has an exact rotating spiral wave solution
u0��; t� � u0��; ��!0t� where u0 obeys the time-
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independent equation in the rotating frame

 �2P̂u0 �!0@�u0 ���u0� � 0 (2)

and � is the angular polar coordinate in 2D.
Isotropic scroll waves in 3D can be constructed as a

stack of 2D spiral waves along a curve ~X��; �� connecting
the spiral waves’ centers of rotation, i.e., the filament,
where � parameterizes the filament and � represents time
in the comoving frame of reference. We introduce comov-
ing coordinates ~x � ~x��A;�; �� (A � 1, 2), where �A in-
dicate curvilinear coordinates locally transverse to the
filament given by ~X��; �� � ~x�0; 0; �; �� [16].

In the isotropic case, this construction only yields an
exact 3D solution if the filament is straight and stationary.
For a general curved filament, there are corrections of order
� � d=R:

 us � u0��A� � �~u��A; �; �� �O��2� (3)

where d is the width of the filament and R its radius of
curvature. For isotropic media, this procedure was realized
by Keener [14] and Biktashev et al. [15] using singular
perturbation theory and Frenet-Serret coordinates.
Dynamic equations were obtained to lowest order in �.

For the anisotropic case, we need to work in general
curvilinear coordinates and rewrite the reaction-diffusion
Eq. (1) in an explicitly covariant way. To do this, we make
the assumption that the determinant of the diffusion tensor
is a constant in space. This condition is fulfilled in homo-
geneous anisotropic excitable media such as myocardium.
Note that deviations from this assumption lead to drift
terms in the equation of motion, which fall outside the
scope of this Letter. Introducing the contravariant metric
tensor Gij � Dij or Gij � �D

�1�ij, we can write the diffu-
sion term as a covariant Laplacian in curved space, for
constant G � detG:

 @i�D
ij@j� �

1����
G
p @i�

����
G
p

Gij@j� �DiD
i (4)

where DiVj � @iVj � �jikV
k stands for the covariant de-

rivative, defined using the Christoffel symbols of the sec-
ond kind �jik �

1
2G

jl�@iGkl � @kGil � @lGik�.
To solve equations in curved space, one usually chooses

local Euclidean coordinates (or in general relativity, local
Minkowski) so that the metric is locally Euclidean up to
second order. In our case, we want to solve the reaction-
diffusion equations in curved space not locally at one point,
but along the complete filament and this at least up to
distances of the order of the width of the filament. For
this purpose, we choose a comoving coordinate system
which, at each point of the filament, is locally Euclidean
in the plane orthogonal to the filament. It can be obtained
by expanding ~x in the plane orthogonal to the filament (up
to second order):

 xi � Xi��; �� � ciA��; ���
A �

1

2
CiAB��; ���

A�B: (5)

Defining ~e� and ~e� as the local frame and its dual (obeying
the orthonormality condition ~e� � ~e� � ���)

 ~e A �
@~x

@�A
; ~e� �

@~x
@�

(6)

 ~e A � ~r�A; ~e� � ~r�; (7)

we have that ciA � eiA�� � 0; �; ��.
We fix the comoving coordinate system by first impos-

ing the condition that DB ~eA � O���, i.e., DB ~eA � ~0 on
the filament (A, B � 1, 2), which ensures that it is locally
Euclidean orthogonal to the filament. One can easily check
from the definition of the covariant derivative that this
condition leads to CiAB � ��ijke

j
Ae

k
B. Since D� ~e� �

���� ~e�, we have ��AB � 0 (� � 1, 2, �) on the filament.
Furthermore, the frame ~e� (and thus the coefficients ciA)

is chosen is such a way that on the filament, it is orthonor-
mal in the curved metric:

 G�� � ei�Gije
j
� � ���: (8)

This fixes our local frame up to an arbitrary rotation around
the filament. Since we do not want to discuss the effects of
twist in this Letter, as they decouple in lowest order from
the translational degrees of freedom [15], we let the frame
rotate with the constant frequency !0 and without twist:

 

_~e A � �!0	
B
A ~eB; D� ~eA � ~e

B � 0 �A � B� (9)

with

 	AB �
0 1
�1 0

� �

the antisymmetric rank 2 tensor with 	12 � 1.
On the filament, we have GAB � �AB and ��AB � 0,

which implies GAB � �AB �O��2�. Together with the no
twist condition (9), one easily finds that �B�A � 0 on the
filament, which along with ��AB � 0 yields thatGA� � 0�
O��2�. Using Eq. (5), we finally obtain

 G�� �

1 0 0
0 1 0
0 0 1� 2 ~eA �D2

�
~X�A

0
@

1
A�O��2�: (10)

The component G�� can be obtained by expanding the
metric Gij around the filament, applying the coordinate
transformation Eq. (5), and choosing the filament parame-
ter � so that it measures the distance along the filament in
curved space. We observe that if the filament is a geodesic
(D2

�
~X � 0), the metric is Euclidean up to second order.

Equation of motion.—There are two types of curvature
effects which will generate non trivial dynamics for the
filament in anisotropic media. The first type, measured by
� � d=R, is due to extrinsic curvature of the filament and

PRL 99, 168104 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
19 OCTOBER 2007

168104-2



also occurs in the isotropic case. The second curvature
effect is due to curvature of space (anisotropy) and de-
scribes how locally parallel geodesics deviate. In the plane
orthogonal to the filament, this effect is proportional to

 � d2R1212, where R���� is the Riemann tensor. We will
assume that the anisotropy is small enough so that devia-
tion of geodesics is negligible over distances of order of the
filament width d. The second order deviations from
Euclidicity in (10) generate extrinsic curvature effects of
order O��2� and intrinsic curvature effects of O�
� due to
anisotropy and can be dropped in the sequel.

We expand the 3D solution as in Eq. (3):

 us � u0��A� � �~u��A; �; �� �O��2; 
� (11)

with @�~u an order � higher than @�~u, i.e., @�~u � @�~u �
O���.

Using Eq. (5) and @t � @� � � ~e� � @� ~x�@�, we obtain
after some calculations and using 	AB�

A@B � @�

 @tus��@�~u�� ~eA � _~X�@Au0�!0@��u0��~u��O��2;
�:

(12)

On the other hand, the diffusion term can be rewritten as

 @i�Gij@jP̂us� � @i�GiA@AP̂us� �O��2� (13)

 � �@iGiA�@AP̂u0 �GAB@2
ABP̂u�O��2� (14)

 � �@iGiA�@AP̂u0 � �2P̂�u0 � �~u� �O��2; 
�: (15)

Introducing the perturbation operator L̂ as

 L̂ � �2P̂�!0@� ��0�u0� (16)

and the fact that u0 is an exact 2D solution of Eq. (2), the
reaction-diffusion equation finally gives

 ��@�~u� L̂ ~u�� �@iGiA�@AP̂u0�� ~eA �
_~X�@Au0�O��2;
�:

(17)

To proceed, we must remember that by introducing the
filament coordinate ~X��; ��, we have augmented the num-
ber of degrees of freedom and hence must impose a gauge
condition on ~u. We demand that ~u be orthogonal to the
time-independent translational modes j Ai 	 @Au0 (A �
1, 2):

 h � Bj~ui � 0 (18)

where the inner product h �v;wi �
R

�vwd�1d�2 [14,15].
The eigenfunctions of L̂ and L̂� are normalized such that
h � Bj Ai � �BA. One can check from Eq. (16) that L̂j 1i �

�!0j 2i and L̂j 2i � !0j 1i. Since in 2D there are only
two rotationally invariant tensors, �BA and 	BA, we gen-
erally have

 h � BjP̂j Ai � �1�BA � �2	BA: (19)

�1 and �2 are real constants depending on the medium
characteristics, and have been calculated in [17] for a given
model. Projecting Eq. (17) on the translational mode, we
obtain

 ~e A � _~X � ��1@iG
iA � �2	

A
B@iG

iB �O��2; 
�: (20)

We note that GiA is a mixed tensor (i is Cartesian and A is
curvilinear). Under transformation of the Cartesian coor-
dinate, the tensor GiA transforms as a three-vector, and
since detG � constant in Cartesian coordinates, we have

 @iGiA �
1����
G
p @��

����
G
p

G�A� � @�G�A � ����G�A (21)

where we have used the well-known fact that ���� �
1���
G
p @�

����
G
p

. By virtue of the Ricci identity D�G�A �

@�G�A � ����G�A � �A��G�� � 0, we thus find

 @iG
iA � ��A��G

�� � ��A��G
�� �O��2; 
� (22)

because of Eq. (10). From the definition of the Christoffel
symbol �A�� � ~eA �D� ~e�, we readily find

 @iG
iA � � ~eA �D� ~e� �O��2; 
�: (23)

Using the definitions of the cross product in Riemannian
space � ~v 
 ~w�i �

Gik���
G
p 	klmvlwm and � ~v 
 ~w�i �

Gik
����
G
p

	klmv
lwm, we have

 	ABe
B
i �

Gik����
G
p 	klme�l e

A
m � � ~e

� 
 ~eA�i; (24)

and we finally obtain after substitution of Eqs. (23) and
(24) in Eq. (20), and after dropping O��2; 
� terms

 ~e A � _~X � ~eA � ��1D� ~e� � �2 ~e� 
D� ~e��: (25)

This equation describes the motion of the filament in the
(�1, �2)-space orthogonal to the filament. It is easily shown
that a similar equation holds along the filament as well.
Indeed, from ~e� � ~e

� � 1, we find that

 ~e � � ��1D� ~e� � �2 ~e� 
D� ~e�� � 0: (26)

On the other hand, reparametrization invariance of the
filament allows us to impose a transversality condition on

the filament velocity, i.e., ~e� � _~X � 0, and relying on the
completeness of the set of base vectors f ~eA; ~e�g, we finally
obtain our main result

 

_~X � �1D� ~e� � �2 ~e� 
D� ~e�: (27)

Since ~e� � @� ~X �D�
~X, we can write the equation of

motion as

 

_~X � �1D
2
�
~X� �2D�

~X 
D2
�
~X: (28)

Discussion.—The dynamic Eqs. (28) we have obtained
are fully covariant under general spatial coordinate trans-
formations for the filament and describe Aristotelian string
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dynamics in curved space where curvature is due to an-
isotropy of the fiber orientation in cardiac tissue. In the
stationary case, taking the scalar product of (28) with D2

�
~X

yields �1jD
2
�
~Xj2 � 0, or if �1 � 0, we find that

 0 �D2
�Xi � @2

�Xi � �ijk@�X
j@�Xk (29)

where �ijk �
1
2D

il�@kDjl � @jDkl � @lDjk� and Dij �

�D�1�ij, i.e., the inverse diffusion tensor. Equation (29) is
the geodesic equation, which validates the minimal prin-
ciple postulated by Wellner et al. [11] for thin filaments.
Since

����
G
p
� �

�����������
detD
p

��1, we can rewrite the dynamical
Eqs. (28) in terms of the diffusion tensor, more commonly
used in cardiac electrophysiology, as

 

_X i � �1D
2
�Xi � �2

Dik�����������
detD
p 	klm@�XlD2

�Xm (30)

with D2
�Xi as in Eq. (29). Therefore, if we know the initial

position of the filament Xi��; t � 0� parameterized by its
arclength �, we can compute its dynamics from Eq. (30),
which is just a system of one-dimensional partial differ-
ential equations. The �1-term in Eq. (30) plays the role
of string tension and can be positive or negative depend-
ing on the properties of the cardiac tissue [15,18]. The
�2-term is typical for string dynamics in cardiac tissue and
does not occur for systems where diffusion is the same for
all components, as is, for example, the case for cosmic
strings in a gravitational field [13]. It plays the role of a
‘‘spin’’-string tension which, for fixed endpoints of the
filament, makes the string spin around the geodesic. For
isotropic cardiac tissue, our equations reduce to the fila-
ment equations of Keener and Biktashev et al. [14,15].

Our derivation predicts O�
� corrections due to intrinsic
curvature of space, and it remains to be seen how they will
affect the stationary case. These corrections will also play
an important role in the dynamical case and might affect
the stability of the filament, not investigated here, and
potentially providing an explanation for the destabilizing
effects of anisotropy that were observed computationally
[8,9].

This work can be generalized in several ways. First, the
constraint that detD is constant can be relaxed at the cost of
an additional conservative drift term in the equation of
motion. Second, higher order corrections can be calculated
both in � and 
. The first type describes rigidity of the
filament under bending, while the second type describes
tidal effects due to the deviation of geodesics in curved
space. It would be interesting to investigate what kind of
dynamical effects these tidal forces could have. Third, we
have neglected the effects of twist, since in lowest order,
they decouple from the filament dynamics [15]. Effects of
twist have been described elsewhere and shown to poten-
tially destabilize filaments [15,19–21]. Our approach can
be applied to these studies to covariantize the equations to

curved space and investigate the effects of twist in general
anisotropy [22]. Finally, the approach developed in this
Letter can be applied to the dynamics of wave fronts in two
and three-dimensional anisotropic cardiac tissue. In three-
dimensional tissue, for example, the movement of wave
fronts can be described by covariant 2-branes equations in
curved space [22].
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