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We introduce a computable estimator of block entanglement entropy for many-body spin systems
admitting total singlet ground states. Building on a simple geometrical interpretation of entanglement
entropy of the so-called valence bond states, this estimator is defined as the average number of common
singlets to two subsystems of spins. We show that our estimator possesses the characteristic scaling
properties of the block entanglement entropy in critical and noncritical one-dimensional Heisenberg
systems. We invoke this new measure to examine entanglement scaling in the two-dimensional
Heisenberg model on a square lattice revealing an ‘‘area law’’ for the gapped phase and a logarithmic
correction to this law in the gapless phase.
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The study of ground state entanglement properties of
strongly interacting quantum many-body systems has re-
cently been the subject of intense research [1,2]. This has
allowed a new perspective on quantum phase transitions
[3], especially in low-dimensional systems [4]. Addi-
tionally, the obtained results have helped in the develop-
ment of improved simulation techniques for quantum
many-body systems [5,6].

A central question in this field regards the scaling char-
acteristics of the entanglement (or geometric) entropy—
which fully quantifies the degree of entanglement (in a
pure state) between a distinguished subsystem of a many-
body system and the rest, in critical and noncritical sys-
tems. This problem actually was considered earlier [7] in
the context of black hole physics. Specifically, in the case
of one-dimensional spin systems, it has been shown that
the entanglement of a contiguous block of spins saturates
with block size L (related to the finite correlation length)
for noncritical systems, while it logarithmically diverges
(S�L� � logL) in critical systems [4]. This logarithmic
divergence depends on the universality class of the studied
quantum phase transition and is governed by the central
charge of the corresponding conformal field theory [8,9].
In d > 1 spatial dimensions, it is believed that the entan-
glement entropy originates only from the boundary sepa-
rating two regions of noncritical systems (S�L� � Ld�1),
while a logarithmic deviation from this ‘‘area law’’ might
characterize critical systems, i.e., S�L� � Ld�1 logL. This
is supported by results for some fermionic systems [10,11],
where the violation of the area law accompanies algebrai-
cally decaying correlation functions and absence of energy
gap; however, it seems that the area law is not necessarily
violated in harmonic lattice systems [12]. In two dimen-
sions for a topologically ordered gapped system, the area
law is modified by an additive universal constant related to
the total quantum dimension of the system [13].
Topological corrections to the entanglement scaling law
have also appeared in the context of quantum gravity
models [14].

In spite of the progress listed in the previous para-
graph, the scaling of entanglement entropy in �d > 1�-
dimensional spin systems has seldom been examined
(however, see Ref. [15] for an ‘‘infinite’’-dimensional lat-
tice). Such studies seem especially warranted in two di-
mensions where the competition between quantum
fluctuations and different lattice topologies lead to inter-
esting quantum phase transitions resulting in novel spin
phases. The following reasons have contributed to the lack
of results for these systems: (1) The explicit characteriza-
tion of the ground state of these systems is generically
hard, (2) The exact evaluation of the scaling of entangle-
ment entropy with the size of the distinguished subsystem
requires, in general, the diagonalization of exponentially
growing matrices.

A different solution, which we propose in this Letter,
amounts to the identification of estimators (specifically
chosen for the examined system or class of systems) yield-
ing the relevant entanglement scaling information that can
be evaluated using quantum many-body techniques. This
approach has the added advantage of encompassing a
physical interpretation of the problem and its solutions.

We consider the isotropic antiferromagnetic Heisenberg
spin-1=2 model

 H �
X
i;j

Ji;jSi� Sj: (1)

A crucial property of the exact ground state of this
Hamiltonian, with an even number of sites, is that it is
believed to be a total spin singlet state [16,17]. Therefore
every such ground state can be represented in the so-called
valence bond basis. We show below how this feature can be
used to introduce an intuitive and remarkably simple esti-
mator of the entanglement entropy of a contiguous block of
spins.

The singlet ground state of the model [Eq. (1)] in general
takes the form of a resonating valence bond state [18], i.e.,
a superposition of various possible valence bond states jcii
(or elementary two-spin singlet coverings; see Fig. 1) on
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the considered lattice

 j�gsi �
X
i

wijcii: (2)

These valence bond states can each be conveniently chosen
as a collection of ‘‘bipartite’’ singlets connecting, e.g.,
spins residing on even- and odd-numbered sites. These
states form an over-complete basis of the singlet sector
of the underlying space, which we hereafter refer to as the
valence bond basis.

A valence bond state appears as the ground state, e.g., of
the isotropic Heisenberg frustrated chain at the Majumdar-
Ghosh point [19]. The entanglement entropy of a set of
adjacent spins A is the number of singlets N Ajrest crossing
the boundary separating it from the rest of the system
(Fig. 1). This identification allows the study of entangle-
ment entropy in the random singlet phase of the Heisen-
berg antiferromagnet [20].

Consider now the general ground state in Eq. (2). It is
intuitively clear that the entanglement between a block of
spins and the rest of the system should be related to the
‘‘average’’ number of singlets crossing the boundary of the
distinguished subsystem. We consider the case of bipartite
lattices—by setting the order of spin pairs in the singlets
globally in the valence bond basis, the wi characterizing
the ground state can be chosen to be non-negative [16,21].
We define the average number of singlets cutting the
boundary constraining a contiguous block of spins as

 

�N Ajrest �
1P
i
wi

X
i

wiN
i
Ajrest; (3)

where N i
Ajrest is the contribution due to the basis state jcii

that occurs with weight wi=
P
iwi. This choice of definition

is motivated by the concept of singlet bond length proba-
bility [18] in a resonating valence bond state that can be
used to define, e.g., the average bond length characterizing
a ground state. It is well-defined in the (over-complete)
valence bond basis, as can be directly verified by compari-
son with results for small systems in the exact so-called
resonating valence bond basis. The quantity �N Ajrest, as
shown shortly, shares the same scaling properties with the
entanglement entropy under certain conditions, and as such
can then be considered an appropriate estimator of the
latter. Interestingly, it depends only on the topological

distribution of singlets in the ground state and, unlike the
entanglement entropy, is easily computable given j�gsi

[Eq. (2)].
It is worth noting that �N Ajrest correctly detects the lack

of entanglement between unentangled regions and is also
symmetrical with respect to the considered regions
�N Ajrest �

�N restjA. Furthermore, it takes on the value of
1 across a boundary containing any single spin signalling
maximal entanglement of a spin with the rest of the system
[22]. Finally, the average number of singlets crossing a
boundary is manifestly subadditive, i.e., �N ABjrest �
�N Ajrest �

�N Bjrest.
Nevertheless, �N Ajrest is not generally equal to the cor-

responding entanglement entropy. In fact, the choice of the
type of subsystem that is examined dictates the effectivity
of describing its entanglement properties using �N Ajrest.
For example, choosing the subsystem A from spins belong-
ing only to one sublattice, �N Ajrest is easily seen to be equal
to the number of constituent spins independently of the
actual entanglement [23]. Therefore, the possibility of
estimating the entanglement entropy exists, in general for
blocks of contiguous spins.

The evaluation of Eq. (3) is facilitated by a recently
proposed ground state projection scheme in the valence
bond basis implemented via quantum Monte Carlo simu-
lations [21]. The ground state is projected out from a trial
state (which we choose as a valence bond basis state)
through the action Hn of a high power of the considered
Hamiltonian. In effect, the states jcii are output with the
appropriate weights �wi and a subsequent counting of
singlets yields �N Ajrest.

We now turn to the scaling properties of our estimator in
one-dimensional systems. Consider first the critical
Heisenberg chain consisting of equal nearest neighbor
interactions J � J0 � 1 [see Fig. 2(a)]. Taking into ac-
count the finite size N of the system, the entanglement
entropy of a block of size L scales as [8]:

 S�L;N� �
c0

3
�
c
3

log
�
N
�

sin
�
�
N
L
��
; (4)

where c � 1 is the relevant central charge [4]. The quantity
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FIG. 1 (color online). A collection of singlets (a valence bond
state) covering an exemplary lattice. The entanglement of the
distinguished subsystem with its complement is the number of
singlets crossing the boundary.
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FIG. 2 (color online). Types of lattices considered below:
(a) the J� J0 one-dimensional chain, (b) the ladder, (c) the J�
J0 staggered square lattice, (d) the J� J00 columnar square
lattice. All interactions are assumed to be antiferromagnetic J,
J0 > 0. Periodic boundary conditions are assumed throughout.
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�N L [Fig. 3(a)] also follows the same functional depen-
dence on the block size, i.e., �N L � ~c0=3� �~c=3� logx�L�,
where the effective length x�L� is the argument of the
logarithm in Eq. (4). The result shows that the entangle-
ment entropy and estimator for identical blocks are linearly
related. This leading order relation is evident also for small
system sizes via exact diagonalization [inset in Fig. 3(a)].
The ‘‘charge’’ governing the logarithmic divergence of
�N L is close to the central charge for the Heisenberg model

~c � 0:92< c.
The linear chain can be tuned away from criticality by

setting J0=J � 1. In particular, for J0 � 0 the ground state
becomes a single valence bond state. The estimator �N L
trivially fulfills an area law. More generally, the noncritical
chain is characterized by saturation of the estimator
[Fig. 3(b)].

A different noncritical system is the Heisenberg anti-
ferromagnet on a ladder [Fig. 2(b)], whose properties are
intermediate between one- and two-dimensional systems
[24]. The ground state is a spin liquid with a Haldane-type
energy gap. The estimator of entanglement saturates with
block size in this case as well [Fig. 3(b)—triangles].

The entanglement estimator and true entanglement are
related through the properties of correlations, which are
completely determined by the distribution of singlets in a
resonating valence bond state, independently of the system

dimension. Heuristically, long (short) range entanglement
is connected with long (short) range singlets, which in turn,
likewise determines the entanglement estimator. This is
proved by the results presented so far and strongly indi-
cates the utility of the introduced estimator in characteriz-
ing the properties of block entanglement in general.

We therefore examine the Heisenberg antiferromagnet
on a square lattice with staggered and columnar dimeriza-
tion [25] [Fig. 2(c) and 2(d)]. The two models undergo
quantum phase transitions between Néel ordered and dis-
ordered valence bond states at J0=J 	 2:46 [26] and
J00=J 	 1:91 [27] respectively. The interplay between an
area law for noncritical parameters and a logarithmic cor-
rection for critical parameters can be captured by assuming
�N L � aL� bL log�L�, i.e., �N L=L � a� b log�L�,

where �N L now regards a square block of linear size L.
The estimator satisfies an area law in the valence bond
phase, as seen in Fig. 4(b) for different lattice sizes.

For uniform couplings (J0=J � J00=J � 1), the ground
state of the square lattice is in a Néel phase in the thermo-
dynamic limit. Finite size scaling of the entanglement
estimator reveals a logarithmic correction to the area law
[Fig. 4(a)]. This is interesting as the considered point does
not correspond to a critical point of this model. The result
is, however, not surprising as the Néel phase, while or-
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FIG. 3 (color online). (a) Scaling of �N L for the critical chain
with respect to the effective length x�L�. Inset: Comparison of
the estimator and exact entanglement for the same partitions in a
small system. (b) Saturation of �N L for noncritical systems:
diamonds—dimerized chain (J0=J � 0:5); triangles—spin lad-
der.

10
0

10
1

1

1.5

2

2.5

3

N=288
N=512
N=968
0.57 ln(L) + 0.97

10
0

10
1

1

1.1

1.2

1.3

1.4

1.5

N=288
N=512
N=968

10
0

10
1

1

1.5

2

2.5

N=288
N=512
0.43 ln(L)+1

10
0

10
1

1

1.5

2

2.5

N=256
N=576
0.41 ln(L)+1

0 2 4
0

2

4

0 2 4
0

2

4

a) Neel b) Valence bond

c) Staggered critical d) Columnar critical

N=18

N=18

N̄
L
/L

N̄
L
/L

N̄
L

S (L )

S (L )

N̄
L

LL

FIG. 4 (color online). Scaling of the entanglement estimator
per boundary area on the two-dimensional square lattice. Shown
are data points for J0=J � 1:0, 6.0, 2.46, and J00=J � 1:91.
Insets: The estimator versus exact entanglement for small sys-
tems.
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dered, is gapless with algebraically decaying correlations
[28].

On tuning toward the critical points, the contribution due
to the logarithmic term smoothly decreases from its Néel
value. Nevertheless, logarithmic corrections to the scaling
of �N L are also present around the respective critical points
of both considered models [Fig. 4(c) and 4(d)]. The critical
coefficients governing the area law violations are almost
equal, presumably because both critical points belong to
the same universality class [25]. The results show that the
average number of bonds crossing a large boundary is
smaller than in the Néel state. This is consistent with the
increase of order, viz. as argued in Ref. [18] antiferromag-
netic order must be associated with longer range singlets in
the resonating valence bond description.

It is worth emphasizing that the relation of the entangle-
ment estimator and true entanglement in the interesting
two-dimensional cases, for a small system, is similar to
those proved in the one-dimensional case [Fig. 4(a) and
4(b)—insets; results are for L � 1, 2, 3] [29]. The valence
bond phase is characterized by the formation of local
singlets on the strong bonds and so the entanglement
must manifestly satisfy an area law.

In conclusion, we have introduced a novel, intuitive
estimator of block entanglement entropy having the rele-
vant scaling properties. In two dimensions, this estimator
predicts logarithmic corrections to the area law for block
entanglement in the Néel (noncritical) phase as well as at
criticality. These results are relevant to the identification of
systems that can be simulated by new variational tech-
niques based on ansatz states (see Ref. [6]) satisfying the
area law. Our estimator is useful in Heisenberg systems,
where entanglement cannot be directly evaluated numeri-
cally or analytically due to the complexity of the associated
ground states.
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Note added.—Recently, it was brought to our attention
that an approach equivalent to the one presented here has
been independently undertaken in Ref. [30], where 1D
cases and the columnar lattice in the Néel and valence
bond phase have been studied yielding results in agreement
with those presented here.
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