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We investigate the propagation of information through the disordered XY model. We find that all
correlations, both classical and quantum, are exponentially suppressed outside of an effective light cone
whose radius grows at most logarithmically with jtj.
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How fast can information propagate through a locally
interacting system? For classical systems an essentially
universal answer to this question is that the velocity of
information propagation is bounded (often only approxi-
mately) by an effective speed of light. It is a more subtle
issue to formulate equivalent velocity bounds for quantum
systems because they can encode quantum information in
the form of qubits and therefore might be able to exploit
quantum interference to propagate information faster.
However, for quantum spin networks this is not the case:
the Lieb-Robinson bound limits the velocity at which
correlations can propagate [1].

The Lieb-Robinson bound implies that there is an effec-
tive light cone for two-point dynamical correlations; i.e.,
apart from an exponentially suppressed tail, two-point
correlations propagate no faster than the speed of light.
Simplified and alternative proofs of the Lieb-Robinson
bound have been subsequently discovered [2–5]. More
recently, it has been realized that the Lieb-Robinson bound
is strong enough to bound not only the propagation of two-
point correlations but of any local encoding of information
[6] (see also Refs. [7–10]).

There are many consequences of the Lieb-Robinson
bound. Apart from the aforementioned bounds on the
velocity of information propagation, it has been realized
that the Lieb-Robinson bound can be used to provide a
method to efficiently simulate the properties of low-
dimensional spin networks [11–15]. Additionally, using
the Lieb-Robinson bound, dynamical entropy area laws
for quantum spin systems can be obtained [6,16].

While the Lieb-Robinson bound is extremely general—
it relies only on the ultraviolet cutoff imposed by lattice
structure—it is, as a consequence, relatively weak. Thus, it
is extremely desirable to develop stronger bounds con-
straining the propagation of quantum information through
systems where more is known about the structure of the
interactions. One setting where one would expect stronger
bounds to be available is when the system has disordered
interactions. This is because they can exhibit the striking
phenomenon of Anderson localization [17], which means
that information is essentially frozen: a quantum particle
placed anywhere within a localized system diffuses only
slightly, even for extremely large times. Thus, exploiting

the parallels between bounds on information propagation
and Lieb-Robinson bounds, we are motivated to conjecture
that interacting spin systems with disordered interactions
satisfy stronger bounds on correlation propagation (see
Fig. 1). More specifically, we conjecture that for quantum
spin networks with disordered interactions all correlations,
both quantum and classical, are suppressed outside of a
light cone whose radius grows at most logarithmically in
time. (Contrast this with the light cone supplied by the
Lieb-Robinson bound: it has a radius which grows linearly
with time.)

In this Letter we study a setting where the dynamics of a
class of disordered interacting spin systems can be shown
to satisfy our logarithmic light cone conjecture; we study
the XY spin chain with disordered interactions in a disor-
dered magnetic field and show that information, and hence
correlations, are exponentially attenuated outside of a light
cone whose radius grows logarithmically with time. The
main result of this Letter, the logarithmic light cone for the
disordered XY model, can by summarized by the following
bound on the dynamic two-point correlation functions:

 k�Aj; eitHBke�itH�k � cn2jtje�vjj�kj=lmax ; (1)

where Aj and Bk are local operators acting nontrivially
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FIG. 1 (color online). Schematic illustration of the conjectured
logarithmic light cone for disordered systems: as time progresses
information is exponentially attenuated outside of a light cone
whose radius grows at most logarithmically with time.
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only on spins j and k respectively, lmax is the localization
length of our system, and c and v are constants. We apply
our new bound to study the structure of the propagator for
large times and the scaling of the entropy of a block of
spins in the evolving system. As a consequence, we prove
the entropy saturation numerically observed by De Chiara
et al. [18]. Our results also constitute a proof of a con-
jecture raised in Ref. [19]: namely, if two parties, Alice and
Bob, have access to a bounded region at either end of the
chain, respectively, then it is impossible for Alice to send
any information to Bob, regardless of how Alice encodes
the information in the single- and higher-excitation sectors.

We consider a one-dimensional chain of n spin-1=2
particles with XY-model-type interactions between
nearest-neighboring spins in an additional transverse field
(e.g., a magnetic B field). We allow the coefficients of the
couplings and the transverse field strength to vary from site
to site within the spin chain. Thus, we study the evolution
of the chain under the Hamiltonian

 H �
Xn�1

j�1

�j��
X
j �

X
j�1 � �

Y
j �

Y
j�1� �

Xn
j�1

�j�
Z
j ; (2)

where �j and �j are drawn from probability distributions
P� and P�, respectively, and where��j (� 2 fX; Y; Zg) is a
Pauli spin operator acting on the spin at site j. Typically,
�j � �J for all j; however, this is not necessary and we
deal with the more general case here.

We solve this system using the Jordan-Wigner transform
[20] (for an introduction to the Jordan-Wigner transform
see Ref. [21]) which, when combined with some exact
results from the theory of localization, allows us to bound
the dynamics of our spin chain.

Let us start by applying the Jordan-Wigner transform,
which maps a system of interacting qubits into a system of
free fermions. The Jordan-Wigner transform defines anni-
hilation operators aj � ��

Z
1 	 	 	�

Z
j�1��j (where �j �

j0ih1j acts on site j) and the corresponding creation opera-
tors ayj , which satisfy the canonical fermionic anticommu-
tation relations. Using this we are able to rewrite the
system Hamiltonian as H �

Pn
j;k�1 Mjka

y
j ak, where the

tridiagonal matrix M is defined via Mj;k � 2�k�j;k�1 �

2�j�j;k�1 � 2�j�j;k.
It is now possible (following the method described in

Ref. [21]) to diagonalize H. After doing so we find the
dynamics for the annihilation operators in the Heisenberg
picture, with aj�t� � eitHaje

�itH:

 aj�t� �
Xn
k�1

vjk�t�ak; (3)

where vjk�t� � �e�iMt�j;k. We now concentrate on bound-
ing the vjk�t�, which in turn bounds the dynamics of the
system.

To proceed further, we must be more specific about our
model: we suppose that P� is a Cauchy distribution with

parameter (or ‘‘width’’) �

 �j 
 P� �
1

�
�

��j � ��2 � �2 : (4)

We note that, as pointed out in Ref. [19], the �j can have a
different distribution without affecting the qualitative as-
pects of the following results (i.e., with a different distri-
bution we still get localization of eigenstates), although of
course the quantitative results will differ.

Under our assumption about the distribution of the �j,
we know from the theory of localization [22] that the
eigenstates of the matrix M are, with high probability,
exponentially localized. [It can be shown that our bound
Eq. (14) holds if and only if every eigenstate is localized.]
The matrix M is an n� n matrix (it is the Hamiltonian for
the single-particle sector). We write fjjig for the basis
induced by the notation Mjk � hjjMjki. If jE�i is an
eigenstate of M with eigenvalue E�, then

 jhjjE�ij � N�e���jj��jj (5)

where j� is the site around which jE�i is localized, N� �
jhj�jE�ij is a normalization constant, and �� � 1=l� is the
inverse of the localization length of eigenstate jE�i: small
l� means that jE�i is a highly localized eigenstate while
large l� means that jE�i is a weakly localized eigenstate.

Using the localization of the eigenstates of M we are
able to bound the matrix elements vjk�t�. First, notice that
vjk�t� � hjje�itHjki � hjjk�t�i �Pn
��1hE�jkie

�itE�hjjE�i. Using this observation, applying
the Cauchy-Schwartz inequality, and Eq. (5) allow us to
conclude that

 jvjkj �
Xn
��1

e�jj�kj=lmax � ne�jj�kj=lmax ; (6)

where lmax � sup�l� and we have used the fact that N� �
jhj�jE�ij � 1. We have illustrated the time dependence of
the absolute values of the matrix elements jvjk�t�j in Fig. 2.
These matrix elements encode several time-dependent
correlation functions which are suppressed by the disorder.
We note that for small �, lmax 


�
� , where � is the geo-

metric mean of the �j [19]. In particular, if �j � �J for
all j, then � � J.

The inequality Eq. (6) is a quantitative statement of the
result that the modulus of the diagonal matrix elements of
e�iMt are large, while the modulus of the off-diagonal
matrix elements decay exponentially with distance from
the diagonal. This means that aj�t� is effectively a linear
combination of only a small number of ak operators—
namely those for which jj� kj is small. It is this fact which
inhibits the spread of operators on the chain, giving rise to
the logarithmic light cone that we derive below.

We now turn to the proof of the improved Lieb-
Robinson bound for our system. We begin by bipartitioning
the spin chain into two sections, A and B, where we assume
the boundary between partitions is between spins m and
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m� 1. We then attempt to write eitH as a product of eitHA

and eitHB . Clearly this will not be exact and so we introduce
an operator V�t� which bridges the boundary between A
and B, and which is designed to compensate for any errors
introduced:

 eitH � eit�HA�HB�V�t�: (7)

The operator V�t� acts nontrivially on all spins in the chain;
however, we now show that V�t� can be well approximated
by another operator, which we call V��t�, which acts only
on a small number j�j of spins. The reason we can do this
is that V�t� acts strongly on spins which are close to the
boundary and progressively weaker on spins as we move
away from the boundary. To prove this approximation is
valid, we use the following differential equation for V�t�:

 

d
dt
V�t� � iV�t�hm�t�; (8)

where hm�t� � e�itHhme
itH and hm is the interaction term

in the Hamiltonian which bridges the boundary. We let �
denote a set of j�j spins centered on the boundary be-
tween the partitions A and B. We also define h�

m �t� �
e�itH�hmeitH� where H� contains only those interactions
in H which act on sites in �. We then define V��t� via

 

d
dt
V��t� � iV��t�h�

m �t�: (9)

Clearly the operator V��t� acts nontrivially only on �.
The error between V�t� and V��t� is bounded by [23]

 kV�t� � V��t�k �
Z jtj

0
khm�s� � h�

m �s�kds: (10)

The error is small when khm�t� � h�
m �t�k small. The physi-

cal intuition behind why this quantity should be small is as
follows. The Jordan-Wigner decomposition allows us to
express hm�t� and h�

m �t� in terms of a local combination of
the fermion creation and annihilation operators for the sites
m and m� 1. Thanks to Eq. (3) and the result of Eq. (6)
that the matrix elements vj;k�t� are very small when jj� kj
grows (as illustrated in Fig. 2) we can approximate the sum
Eq. (3) by

 aj�t� 
X
k2�

vjk�t�ak: (11)

Doing the summations and applying the triangle and
Cauchy-Schwartz inequalities several times allows us to
conclude that khm�t� � h�

m �t�k � cn2e�j�j=2lmax and that

 kV�t� � V��t�k � cjtjn2e�j�j=2lmax ; (12)

for some constant c. In particular, given � � 0, choosing
j�j � 2lmax log�cjtjn2=�� ensures that kV�t� � V��t�k �
�. That is, given any � � 0 we can choose � to be a large
enough set such that V��t� approximates V�t� to within �.
This enables us to write eitH � eit�HA�HB�V��t� �O���.

Following Ref. [11] we recursively apply the above
partitioning procedure to find eitH � Q�t� �O���, where

 Q�t� �
�On=j�j
j�1

eitH�j

��On=j�j
k�0

V�0k�t�
�
; (13)

and where P 1 � f�jg is a partition of the chain into n
j�j

blocks, each containing j�j spins and where P 2 � f�
0
kg is

a partition of the chain obtained by shifting P 1 along by j�j2

sites (note that �00 and �0n=j�j are half-size blocks of j�j2

sites each). This is our fundamental structure result for the
dynamics of the disordered XY spin chain.

A Lieb-Robinson bound is an upper bound on quanti-
ties such as k�A;B�t��k. We now show how the above
structure result implies a version of the Lieb-Robinson
bound which is substantially stronger than the original.
Define ~B�t� to be the operator which arises when we evolve
B according to the approximation Q�t� of eitH, namely,
~B�t� � Q�t�BQy�t�. This enables us to write B�t� � ~B�t� �
O���. Note that ~B�t� acts trivially on all sites which are a
distance greater than 3j�j=2 away from those sites on
which B acts. Thus, if d�A;B� � 3j�j=2, where d�A;B�
is the distance between A and B, then �A; ~B�t�� � 0, and so
for a given j�j:

FIG. 2 (color online). Typical results for the magnitudes
jvj;k�t�j of the matrix elements of eitM for a 100-site chain at
times t � 1, 5, 25, 125 (going from top left to bottom right). The
darker the entry the smaller jvj;k�t�j. The matrix elements vj;k�t�
encode the time-dependent correlation functions
h�jaj�0�a

y
k �t�j�i � h�j�

�
j �0��

�
k �t�j�i. Notice the rapid decay

of the correlation functions vj;k�t� for j� k is roughly inde-
pendent of time: all correlations are suppressed outside of the
logarithmic light cone. Appropriate linear combinations of
vj;k�t� yield similar results for the time-dependent correlation
functions h�j�xj �0��

x
k�t�j�i and h�j�yj �0��

y
k�t�j�i.
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 k�A;B�t��k � k�A; ~B�t��k �O��� � cn2jtje�kd�A;B�=lmax ;

(14)

where c and k are constants. This is the logarithmic light
cone for the two-point dynamical correlation functions.
Compare this to the original Lieb-Robinson bound, which
reads k�A;B�t��k � cek1jtje�k2d�A;B�.

We now mention two consequences of the logarithmic
light cone for the disordered XY model. The first is a proof
of the conjecture that two parties, Alice and Bob, with
access to only bounded regions A and B at either end of the
chain, respectively, cannot use the dynamics of the disor-
dered model to send information from Alice to Bob. We
follow the argument of Ref. [6], appropriately modified to
take account of our stronger bound.

Let C � L n �A [ B�, where L is the chain, be the region
that Alice and Bob cannot access. The most general way
Alice can encode her message is via a set of unitary
operators fUk

Ajk � 1; 2; . . . ; mg on her system, where k is
varied according to the message she wants to send. After a
time t has elapsed the system has evolved from an initial
state 	0 to 	�t� � e�iHt	0eiHt. We interpret this as a
quantum channel with input 	kABC � Uk

A	0U
ky
A and output

	kB�t� � trAC�Uk
A�t�	0U

ky
A �t��. As argued in Ref. [6], the

output states are all very close together, as measured in
trace norm:

 k	kB�t� � 	B�t�k1 � cn2jtje�vd�A;B�=lmax ;

where 	B�t� � trAC�e
�iHt	0e

iHt�.
If Alice applies the unitaries fUk

Ag according to the
probability distribution fpkg, the amount of information
that is sent through the channel is given by the Holevo
capacity:

 
�t� � S
�Xm
k�1

pk	kB�t�
�
�
Xm
k�1

pkS�	kB�t��;

where S�	� is the von Neumann entropy. Applying Fannes
inequality [24] we find that

 
�t� � 2��jBj � log2����;

where � � cn2jtje�vd�A;B�=lmax . That is, Bob has to wait an
exponentially long time [in d�A;B�] before a nontrivial
amount of information can arrive. The optimal encoding
for Alice to adopt was investigated in Refs. [25,26] and
completely solved in the single-use case in Ref. [27].

The second consequence of the logarithmic light cone
bound is that the entropy of any contiguous block B of
spins in a dynamically evolving product state j �t�i �
eitHj00 	 	 	 0i is bounded. Indeed, applying the argument
of Refs. [16,28], we find that S�	B�t�� � c1 � c2log2�njtj�
as jBj ! 1, where c1 and c2 are constants. This provides a
theoretical explanation for the phenomenon numerically
observed by De Chiara et al. [18].

In this Letter we have proposed that disorder in interact-
ing systems should result in a logarithmic light cone for all
time-dependent correlators of local observables. We have
verified this conjecture for the XY model. We have also
shown that such a logarithmic light cone, if true, implies
that the block entropy can only grow sublinearly with time
and also that all information, both classical and quantum,
will take an exponential time to leak from bounded
regions.
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