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We provide here new insights into the classical problem of a one-dimensional superconducting wire
exposed to an applied electric current using the time-dependent Ginzburg-Landau model. The most
striking feature of this system is the well-known appearance of oscillatory solutions exhibiting phase slip
centers (PSC’s) where the order parameter vanishes. Retaining temperature and applied current as
parameters, we present a simple yet definitive explanation of the mechanism within this nonlinear model
that leads to the PSC phenomenon and we establish where in parameter space these oscillatory solutions
can be found. One of the most interesting features of the analysis is the evident collision of real
eigenvalues of the associated PT-symmetric linearization, leading as it does to the emergence of complex
elements of the spectrum.
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We consider a finite superconducting wire subjected to
an electric current that is fed into one of its ends, creating a
voltage difference across the wire. This is a canonical
problem that has received considerable attention over the
past 40 years because it involves a resistive state with the
coexistence of a normal and superconducting current, yet
the theoretical mechanisms at play in this physical setup
have remained poorly understood. One such mechanism
associated with this state is the intriguing formation of
phase slip centers. These are points in space-time where
the order parameter in the time-dependent Ginzburg-
Landau equation (TDGL) vanishes and they can be thought
of as vortices in space-time, [1]. The appearance of phase
slip centers is related to oscillations found numerically
through the emergence of time-periodic solutions, but
another type of behavior found in the resistive state in-
volves stationary solutions of the TDGL [2]. In this case
the gauge invariant quantities reach a steady state. The
phase slip centers and the associated oscillations can be
indirectly observed experimentally via the appearance of
steps in I–V curves ([2–4]), though we will expose hys-
teresis phenomena found in certain regions of parameter
space that cast some doubt on previous assertions as to the
equivalence of phase slip center (PSC) appearance and
jumps in I–V curves.

Our goal then is to revisit this classical problem in order
to provide a clean elucidation of the mechanisms leading to
different patterns observed in the resistive state and to
provide a ‘‘road map’’ in parameter (temperature or ap-
plied current) space revealing where one should expect
either periodic states, stationary states, or both. In particu-
lar, we will explain why and when oscillatory solutions
emerge and compute their periods as they bifurcate from
the normal state. We will also consider the loss of stability
of these oscillatory solutions as the temperature is lowered
below a critical value that depends on the applied current I.
The key idea is that the oscillations appear as a conse-

quence of a Hopf bifurcation driven by a PT-symmetric
spectral problem. A crucial role in the analysis is played by
the dependence of this spectrum on the applied current. An
additional goal here is to elucidate the appearance of
hysteresis in I–V curves in the present setup.

Our starting point is the time-dependent Ginzburg-
Landau model that we write in a nondimensional form:

  t � i’ �  xx � � � j j2 : (1)

Here  is the complex-valued order parameter, ’ is the
electric potential, and � is proportional to Tc � T.
Conservation of the current I implies the relation

 

i
2
�  �x �  x �� � �’x � I; (2)

where � models the Ohmic resistivity. [In Eqs. (1) and (2)
and all subsequent equations, we use a variable in subscript
to denote a partial derivative]. The wire is assumed to
extend along �L � x � L, and it is assumed that
 ��L; t� � 0. The main conclusions below are also valid
for other boundary conditions such as  x��L; t� � 0. In
order to concentrate on the main features of the phase
transition mechanism, we take � � L � 1. This enables
us to concentrate on the key parameters I and �. Some

TDGL models include a factor �1=
����������������������
1� �2j j2

p
in front of

the left hand side of Eq. (1). We deal here with the small
�2 limit, but our essential results are valid for finite posi-
tive �2.

To understand the phase transition from the normal state
to the superconducting state we linearize the TDGL (1)
about the normal state  � 0, ’ � �Ix. Writing  �x; t� �
u�x�e�����t, we obtain for u�x� the spectral problem

 M	u
 � uxx � ixIu � ��u; u��1� � 0: (3)

The spectral problem (3) is called PT-symmetric, since it is
invariant under the joint transformation of x! �x (parity)
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and complex conjugacy (time reversal). The normal state
thus loses its stability when �> Real���I��. However,
since the spectral problem (3) is not self-adjoint, it is not
clear at all that the spectrum is real. On the other hand the
PT symmetry provides some useful information on the
spectrum. Spectral PT-symmetric problems have attracted
some interest in recent years following the numerical ob-
servation of Bender and Boettcher [5] that the spectrum of
certain PT-symmetric problems is real. While Ref. [5]
considered a problem on the entire line, we deal here
with a problem in a finite interval. When I � 0 the spec-
trum is of course real. The PT symmetry implies that if
[�; u�x�] is a spectral pair with complex �, then also [��,
u���x�] is a spectral pair. Since the spectrum depends
smoothly on I as long as the eigenvalues remain separated
[6], a real eigenvalue cannot split spontaneously into a
complex pair. This implies that at least for small I all
eigenvalues are real. However, when the current I is large,
the lowest eigenvalues (in absolute value) are shown to
satisfy � � O�iI�;, namely, to leading order they are purely
imaginary. This implies that eigenvalues indeed collide as I
increases. Specifically we find that the first such collision
occurs when the first and second eigenvalues approach
each other and collide at a critical value Ico � 12:31.

At the collision point, the geometric multiplicity of the
eigenvalue is 1. To find the behavior of the spectrum near
Ico we set the current I to be I � Ico � �a. Here � is a small
positive number, and we introduce a to determine through
its sign the direction in which we move from Ico. We then
consider an expansion of the form

 � � �0 � �1=2�1 � ��2 � . . . ;

u � u0 � �1=2u1 � �u2 � . . . :
(4)

The nonanalytic nature of the expansion for � is a conse-
quence of the Jordan form of the spectral problem at the
critical value I � Ico. The leading order term in (4) is
found to be �0 � 0:71, with an associated eigenfunction
u0 that we normalize by u0�0� � 1. The first order correc-
tion �1 is conveniently expressed through the auxiliary
function K�x� that solves

 Kxx � ixIcoK ��0K � u0; K��1� � 0: (5)

Writing u0 � Ur � iUi, and defining a1 � 2
R

1
�1 xUrUidx

and b �
R

1
�1 Ku0dx, one obtains �2

1 � �aa1=b. A nu-
merical integration gives a1 � 0:29 and b � 0:12. Since
a1=b > 0, we see that when a < 0, i.e., when I is a little
smaller than Ico, there are two real solutions; these are the
first two real eigenvalues just before the collision.
However, for I beyond Ico, that is, for a > 0, the single
eigenvalue �0 splits into a pair of complex eigenvalues. It
can be further shown that �2 is a single real number; i.e., it
is the same for both splitting eigenvalues [7]. The analysis
above shows that the real part of the leading eigenvalue is
not an analytic function of the current at I � Ico. In fact, its
derivative blows up as Ico is approached from below. On

the other hand, the real part of the first eigenvalue (pair) is a
smooth function of I just above Ico. This analysis holds for
any later collision of real eigenvalues as well. It is in
agreement with the numerical calculation presented in
Fig. 1.

We computed the first few eigenvalues numerically as
they increase past special collision points. Increasing I
beyond Ico, the first two eigenvalues move as a complex
pair according to the PT symmetry. The real parts of the
first six eigenvalues as a function of I are plotted in Fig. 1.
We see there that respective pairs of eigenvalues collide at
successive critical values of I.

The normal state becomes unstable at that value of � for
which �� Real��� � 0. For I < Ico the first eigenvalue
��I� is real. When the temperature is sufficiently low, i.e.,
when � � ��I�, the normal state loses stability. Proceeding
to high order terms in the bifurcation expansion it is found
that the bifurcation branch that emerges at � � �1�I� �
��I� is stable for I < Ik � 10:92. In this regime, i.e., when
I < Ik and �> ��I�, the bifurcating solution converges to a
stationary solution. By ‘‘stationary’’ here we mean that
writing  � fei�, the gauge invariant quantities f�x; t�,
q�x; t� � �x�x; t�, and ��x; t� � �t�x; t� � ’�x; t� converge
to stationary functions f0�x�, q0�x�, �0�x�. Once I crosses
the critical collision value Ico and the eigenvalue splits into
a conjugate complex pair, the phase transition temperature
is determined by the condition � � Real���I�� � �1�I�.
Thus, I > Ico a Hopf bifurcation occurs and the solution
to the full TDGL is periodic.

Consider now a current I > Ico. When � is below �1�I�,
the positive real part of the spectrum dominates, and the
normal state is stable. Increasing � with I fixed we see that
when � � �1�I� a Hopf bifurcation into a periodic solution
takes place as explained above. In addition to determining
the bifurcation curve � � ��I�, the spectral problem (3)
can also be used to compute the bifurcating branch, which
is always stable, in the periodic regime. To see this, fix a
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FIG. 1 (color online). The real parts of the first six eigenvalues
of the PT-symmetric spectral problem (3).
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current I greater than the critical value Ico. Let the ground
state of Eq. (3) consist of the eigenvalue pair �r � i�i, with
associated eigenfunctions w1�x� and w2�x� related by
w1�x� � w�2��x�. We normalize both eigenfunctions by
the condition wi�0� � 1. Set the temperature to be slightly
below the critical value determined by � � �1�I�, by se-
lecting � � �r � �

2. Neglecting a short time interval dur-
ing which transients decay, the asymptotic solution of the
full TDGL (1) and (2) is found to be of the form

 

u�x; t� � �A	exp�i�!�2 � �i�t�w1�x�

� exp�� i�!�2 � �i�t�w2�x�
 �O��
3�: (6)

The amplitude A and frequency ! are constants that are
determined by the ground state w1 and w2. They are
computed numerically for each current I. For instance,
when I � 20 we found A � 0:921, ! � 1:8. One can
draw a number of conclusions from the expression (6).
First, the period of the oscillations is not exactly the
imaginary component of the eigenvalue, but rather it is
has a correction due to the nonlinear interaction of w1 and
w2. Second, the solution at x � 0 is u�0; t� � 2�A cos
[��i �!�2�t]. Therefore we obtain a phase slip center
that is periodic in time at x � 0. Ivlev and Kopnin [1]
made the nice observation that a PSC can be thought of
as a vortex in space-time. In this sense, the solution struc-
ture given in Eq. (6) indicates that the PSC’s constitute a
periodic placement of degree-one space-time vortices with
period P � �=��i �!�

2�. The curve �1�I� is depicted by
the solid line in Fig. 2.

So far we have concentrated on the smooth bifurcation
of the normal state into a periodic state or into a stationary
state. It turns out, though, that there are regions in the
parameter plane where two metastable states coexist. The
transition between them is nonsmooth, and therefore it is
associated with hysteresis. We already pointed out above
that for Ico > I > Ik the normal state bifurcates into an
unstable branch. This hints that the phase transition there is
nonsmooth. Indeed, we identified another curve in the
phase plane, that we call �2�I�, above which the stationary

state is stable. The curve �2�I� is depicted as a dashed line
in Fig. 2.

To understand the loss of stability of the periodic state,
we recall that the Hopf bifurcation that led to it was
triggered by the normal current contribution to the poten-
tial term i’ in Eq. (1). Near the transition curve � �
�1�I� the magnitude j j of the order parameter is still
small, and essentially the entire current is normal. As the
temperature is lowered (i.e., � increases), j j grows and so
does the supercurrent, implying via (2) that the normal
current decreases. This effectively returns the system to the
small I regime where the bifurcation to a steady state is
favored. We thus obtain a third bifurcation curve �3�I�
where the periodic state loses it stability.

At this point we make reference to Fig. 2 and consider
the different regimes in the (I, �) plane. The solid curve
provides the critical temperature � � �1�I� along which
the normal state loses its stability. A stable stationary state
exists above the dashed line that represents a second curve
�2�I�. For I < Ik the normal state bifurcates into a stable
stationary superconducting state. For I > Ico, on the other
hand, the normal state bifurcates into a state that exhibits
time-periodic oscillations. When I > Ico, and the tempera-
ture is further lowered (� is increased), the periodic state
loses its stability at a third critical temperature � � �3�I�
represented by the dotted line in the figure. The curves
�2�I� and �3�I� intersect at Iq. For I > Iq, the curves �2�I�
and �3�I� coalesce. The frame on the left depicts the
bifurcation curves over a large (I, �) area, while the frame
on the right concentrates on the interesting area near the
point [Ico, �1�Ico�], where �1�Ico� � 7:11. The parameter
plane is partitioned into 5 domains. In domains 1, 4 and 5
there is a single stable state—the normal state in region 1,
a stationary state in region 4 and a periodic state in region 5.
In region 2 there are two metastable states—normal and
stationary, while in region 3 a stationary and a periodic
state are both metastable.

We proceed to draw two further conclusions related to
the bifurcation diagram. It is useful to do so in the context
of I–V curves. These curves are measured or computed for
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FIG. 2 (color online). The phase diagram of the different stable states in the temperature-current plane. The parameter � is
proportional to Tc � T. The curves �1�I�, �2�I�, �3�I� are drawn with solid line, dashed line, and dotted line, respectively. The meaning
of the different curves and regimes is explained in detail in the text.
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a fixed �, while the current I is raised or lowered adiabati-
cally. When this process cuts through the metastable re-
gions 2 and 3 in Fig. 2 a hysteresis is expected in the I–V
curve. While such a hysteresis was predicted a long time
ago, we point out that it is not always observed experimen-
tally [4]. As can be seen in Fig. 2, the metastable regions
are quite small, and therefore it requires careful tuning to
pass through them. Another comment relates to the for-
mation of PSC’s. These points in space-time where j j
vanishes are often associated in the literature with jump
discontinuities in the I–V curve. However, this identifica-
tion works only in one way, and not all such jumps imply
the presence of a PSC. For instance, we depict in Fig. 3 the
I–V curve for � � 6:3 and I slowly increasing. For this �
one never crosses an area in the parameter plane where the
periodic state is stable, and therefore there is no PSC.
Nonetheless, the I–V curve exhibits a clear discontinuity
at about I � 12:57. The actual rule for lack of smoothness
in I–V curves is that a jump discontinuity indicates a
nonsmooth phase transition, while a discontinuity in the
derivative indicates a continuous phase transition.

To conclude, using a combination of asymptotic expan-
sions, spectral analysis, and canonical numerical compu-
tation, we have clarified the mechanisms underlying the
interesting behavior of the now classical problem of a

superconducting wire exposed to an applied electric cur-
rent. In particular, retaining temperature and applied cur-
rent as parameters in the time-dependent Ginzburg-Landau
model, we have decomposed this two-dimensional pa-
rameter space into regions of stability of a normal, sta-
tionary and oscillatory state. The collision of real
eigenvalues and the consequent emergence of complex
spectrum in the associated linearized problem provides
the explanation for the Hopf bifurcation leading to the
appearance of the oscillatory state and the associated phase
slip centers. From the theoretical standpoint, this clearly
stands as a physically significant setting where PT sym-
metry does not lead to reality of the spectrum, in contrast to
its common role [5,8]. The boundary of the basin of
attraction of the normal state has been given precisely in
terms of the real part of the leading eigenvalue in this
linearized problem. The boundary between the basins of
attraction of the oscillatory and stationary states has been
calculated near the triple point using asymptotics, and has
been computed numerically beyond this. In so doing, we
have identified small regions in the temperature or current
plane where hysteresis should be anticipated and where
jumps in I–V curves do not necessarily correspond to the
presence of PSC’s. Finally, the asymptotic structure of the
periodic solution bifurcating off the normal state has been
developed for I above the first collision value Ico and for �
just above the real part of the first eigenvalue. This expan-
sion reveals the period of the oscillations and location of
PSC’s along the x axis.
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FIG. 3 (color online). The I–V curve for � � 6:3 and I in-
creasing. Notice that, although the periodic state does not exist
for such temperature, and thus there is no PSC here, the I–V
curve does exhibit a jump discontinuity at I � 12:57.
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