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Using the hierarchy picture of the fractional quantum Hall effect, we study the ground-state periodicity
of a finite size quantum Hall droplet in a quantum Hall fluid of a different filling factor. The droplet edge
charge is periodically modulated with flux through the droplet and will lead to a periodic variation in the
conductance of a nearby point contact, such as occurs in some quantum Hall interferometers. Our model is
consistent with experiment and predicts that superperiods can be observed in geometries where no
interfering trajectories occur. The model may also provide an experimentally feasible method of detecting
elusive neutral modes and otherwise obtaining information about the microscopic edge structure in
fractional quantum Hall states.
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With the recent surge of interest in quantum computing
[1], quantum Hall systems [2] have received renewed
attention due to their potential use in topologically pro-
tected qubits. In particular, the � � 5=2 and � � 12=5
quantum Hall states are believed to support non-Abelian
excitations [3] which are crucial ingredients for topological
quantum computation [1]. Here we will focus only on the
Abelian quantum Hall states, but we will make use of their
topological properties to reveal universal periodicities (as a
function of magnetic flux through the droplet) in the
ground-state energy and edge properties of a quantum
Hall droplet inside a surrounding Hall fluid of a different
filling factor. The universal periodicities in the ground-
state properties can generically be used to probe the quan-
tum Hall edge states in equilibrium settings.

Our work is motivated in part by a series of beautiful
experiments done on quantum Hall interferometers where
superperiods and fractional statistics have purportedly
been observed [4]. Several theoretical studies have already
addressed these experiments [5], but a complete picture,
particularly in the fractional quantum Hall regime, is still
lacking. In this Letter we study the universal properties of a
finite size quantum Hall droplet inside a quantum Hall fluid
of a different filling factor (Fig. 1). For most geometries
and droplet filling factors we find that the ground-state
energy of the system has a periodicity with magnetic flux
through the inner droplet that is determined only by the two
filling fractions in the limit that the charging energy of the
surrounding fluid edge tends to zero. However, edges such
as that of the � � 2=3 state (which have counterpropagat-
ing modes and disorder-influenced excitations [6]) require
a special degree of consideration, as we discuss below.

Consider a droplet of filling factor �d surrounded by a
fluid of filling factor �s, which itself may be inside an outer
fluid of filling �o (Fig. 1). As magnetic flux is adiabatically
threaded through the inner droplet, its ground-state energy
and its radius oscillate with a universal periodicity. This
periodicity reveals important information about the micro-
scopic structure of the droplet edge itself, thus providing a

mechanism by which theoretical edge models can be di-
rectly tested experimentally. We concentrate on two im-
portant special cases: (i) �d � 2=5, �s � 1=3, �o � 0 and
(ii) �d � 2=3, �s � 0, �o � 1. General filling fractions
with Abelian statistics follow one of the two cases above.
While disorder does not play a central role in the physics of
the edge in case (i), in case (ii) disorder determines the
nature of the edge excitations [6], by causing counterpro-
pagating modes of the droplet edge to ‘‘recombine’’ into
charged and neutral modes. The precise way in which the
radius changes with flux can directly probe whether this
recombination occurs, or whether the edge structure is that
of the clean system, as described in Ref. [7]. Therefore, the
flux dependence of the conductance can reveal the pres-
ence or absence of elusive neutral modes, which to the
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FIG. 1 (color online). Schematic of our setup. A quantum Hall
droplet of filling factor �d is surrounded by a Hall fluid with
�s � �d, itself surrounded by an outer fluid with �o. Tunneling
between the �s fluid edges occurs at two point contacts with
amplitudes t1, t2. Tunneling (with amplitude tR) also occurs
between the droplet edge and the surrounding fluid edge, which
acts as a reservoir. Periodic charging of the droplet edge with
flux will cause periodic modulations of the tunneling amplitudes
t1, t2 implying conductance oscillations of the same period at the
point contacts. The period will depend on �s, �d, and �o with
periods greater than a flux quantum possible. The system could
be contacted in the way described in Ref. [4].
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best of our knowledge have not yet been experimentally
detected.

The expansion and contraction of the inner droplet
results from a charging and discharging of its edge. In
the proposed setup, this affects the conductance of a quan-
tum point contact near the droplet due to Coloumb inter-
action: the changing electric potential near the point
contact affects the distance between the two edges that
the point contact connects. Such an interaction-modulated
conductance was used to detect charge states in a double
quantum dot system and to coherently manipulate spin [8].
It might also be relevant for certain geometries of quantum
Hall interferometers, such as those of Ref. [4], and may be
the cause of the superperiods observed there, rather than
interference. In fact, superperiods would also result from
potential modulations at a single point contact via the
physics outlined above. Whether the origin of observed
superperiods in interferometers with two point contacts are
the result of interaction-modulated tunneling, or of true
interference, can be determined in experiment by sup-
pressing tunneling at one of the point contacts (t1 in
Fig. 1, for example). Interference effects would disappear,
but interaction-modulated tunneling effects would still
produce oscillations. A similar suggestion was also made
be Rosenow and Halperin in Ref. [5].

The ground-state periodicity for a quantum Hall droplet
has been discussed before [9] using bulk fluid descriptions.
Here we use an edge state description [10] to emphasize the
physics that depends on the nature of the edge modes
themselves. As we are interested in the universal properties
of such a droplet in a surrounding Hall fluid, we use the
theory describing the universal aspects of the fractional
quantum Hall state [10,11]. The edge modes constitute a
minimal model [12] described by theK-matrix formulation
of Wen [10]. In this formulation, the action is

 Sedge�
Z dtdx

4�
�Kij@t�i@x�j�Vij@x�i@x�j�2tiA@x�i�;

(1)

where K is a matrix determined by a choice of basis
denoted by t, which determines the coupling to the vector
potential A; the filling is � � tyK�1t. The dimension of K
reflects the filling � of the quantum Hall state and equals
the number of independent edge modes. V is a nonuniver-
sal positive definite matrix determined by edge mode
interactions and the confining potential, and �i�x; t� are
bosonic fields parametrizing the edge modes.

The topological content of the quantum Hall state is
encoded in K. For a droplet inside a surrounding fluid,
the interface K-matrix is [13]

 K �
Kd 0
0 �Ks

� �
; (2)

where Kd and Ks describe the droplet and the surrounding
liquid, respectively. If there exists an integer valued vector
m such that myK�1m � 0 and tyK�1m � 0, then K is

topologically unstable [14] and may reconstruct by some
edge modes ‘‘gapping’’ each other out, thus reducing the
number of edge modes. If the droplet Hall state is a
descendant of the surrounding state, this is always possible,
and akin to low-level composite fermion Landau levels
connecting adiabatically across the interface. The topo-
logical stability of the interface edge also depends on the
nonuniversal V; here we assume instability, since it occurs
for a wide and realistic range of V.

A crucial component for our setup is the finite size of the
droplet. This implies a level quantization, which can be
inferred using gauge invariance and quantized Hall con-
ductance. Consider an edge described by the field�, which
is a linear combination of the �i that diagonalizes the
matrices K and V and obeys ���x�;@x��x0���q��x�x0�.
The operator exp�i�� thus creates an edge excitation of
charge q and upon flux h=e insertion at a point within
the inner droplet, the creation operator must become
exp�i�� ! exp�i�� 2�iq x

L�, where L is the length of
the edge. But from gauge invariance, the spectrum of the
edge must remain unchanged. The charge in each of the
orbitals must then be q to obtain quantized Hall conduc-
tance, �xy � qe2=h. Thus, a finite edge loop can be de-
scribed as a chiral Luttinger liquid which consists of
discrete orbitals, each containing charge q.

Let us now treat the case of a �d � 2=5 droplet in a �s �
1=3 and �o � 0 surrounding. For filling factor � �
n=�np� 1�, the K-matrix in the symmetric basis is an
n-dimensional matrix [6], Kij � �ij � p. Since the 2=5
state is the daughter of the 1=3 state, the K-matrix given
by Eq. (2) is indeed unstable, and the resulting recombined
edge is identical to that of a � � 1=15 Laughlin state. The
1=15 effective edge within a 1=3 edge leads to a 5�0

periodicity of ground-state properties of the droplet with
magnetic flux through it, a result in agreement with a bulk
description [9] and experiment [4].

To see this, consider the gapped droplet state. Upon an
adiabatic �0 � h=e flux insertion at a point in the �d �
2=5 droplet, a net charge of 2e=5 is localized at the flux.
This charge is sucked from the two edges: an e=15 orbital
is vacated in the 2=5� 1=3 edge, and an additional e=3
orbital is vacated in the 1=3� 0 edge. Confirming our
assertion above as to the edge structure, indeed 1=3�
1=15 � 2=5. Smearing the flux uniformly over the droplet
yields the same result. Repeating the adiabatic flux inser-
tion will progressively charge the droplet edge in units of
�e=15 and the surrounding fluid edge in units of �e=3.
Additional flux outside the droplet may create additional
excitations of charge�e=3 on the outer edge, but it will not
influence the edge charge of the droplet. Through the
ubiquitous presence of disorder in quantum Hall systems,
it is possible for quasiparticles to tunnel [15] between the
1=3� 0 edge and the 2=5� 1=3 edge and relax the energy
of the system. The allowed charges are determined by Ks
[10], and the most relevant operator in the present case is
indeed e��i�s�5i�d�, which tunnels charge e=3.
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Assuming both edges are initially neutral, denote the
number of additional filled edge states by nd and ns, for the
droplet and surrounding fluid, respectively. The energy of

the charged edges is Ed=s �
Ed=sc

2 n2
d=s for the droplet or

surrounding fluid. The energies Edc , Esc depend on the
edge velocities and capacitances and are inversely propor-
tional to the length of the edges. The total charge on the
edges is Q � � e

15 nd �
e
3 ns. The two distinct edge excita-

tions have chemical potentials determined by � � @E
@n ,

which gives �d=s � Ed=sc nd=s. When the two edges are in
equilibrium, �d�nd ��s�ns � 0, and from charge con-
servation, �nd � �5�ns. Thus 5�d � �s (i.e., the two
edges have the same voltage). This also gives Escns �
5Edcnd at edge equilibrium. Now, the edge occupations
nd and ns depend on the flux threaded. Assuming all of
the flux is through the droplet, we have 6 �

�0
� nd � 5ns �

��� 5�ns, where � � Esc
5Edc

. Solving this for ns gives ns �

round��
�0
� �1��5���

�
�0
�.

The first term indicates that every flux insertion raises ns
by one. The second describes e=3 charge transfer between
the two edges. In the limit �! 0 (occurring when the
length of the surrounding fluid edge is long compared to
the droplet edge), every 5�0 added increases ns by one
extra state due to the tunneling of an e=3 charge. This
happens when the rounding function changes from round-
ing down to up. The one e=3 charge annihilates five�e=15
charges and returns the droplet edge to its initial state. In
the opposite limit, �! 1, every � � 1=3 orbital vacated
due to �0 insertion immediately gets filled via charge
transfer from the droplet edge. For general values of �
(i.e., the ratio of edge ‘‘charging energies’’) the period is
nonuniversal as shown in Fig. 2. Allowing flux insertion in
both the droplet and the surrounding fluid changes the
response of the 1=3 edge, but in the limit �! 0, this
will not affect the period with respect to droplet flux, as
the ‘‘rate limiting’’ step is due to the finite compressibility
of the droplet edge. Therefore, the droplet 5�0 flux period
emerges as the universal droplet edge charging result when
�! 0, independent of the area of the surrounding Hall
fluid.

A finite tunneling amplitude between the two edges foils
the exact quantization of the expectation value of the
droplet edge charge [16], as shown in the inset of Fig. 2
in the limit �! 0. With the smooth oscillation of edge
charge, there is a flux dependent oscillation of the electrical
potential that will affect the conductance of a nearby point
contact, as in Fig. 1. Modeling the droplet as an outer ring
of charge Qring and a uniformly charged inner disk of net
charge Qdisk, the potential from a droplet of radius R at a
distance d > R from the center is V � Vring � Vdisk, where

Vring �
Qring

�� �
K��4Rd=�d�R�2�

d�R � K�4Rd=�d�R�2�
d�R � and Vdisk �

2Qdisk

��R2

R
R
0 rdr�

K��4rd=�d�r�2�
d�r � K�4rd=�d�r�2�

d�r �. Here � is the di-
electric constant and K�x� is the complete elliptic integral
of the first kind. The potential fluctuations are plotted in

Fig. 3 and should be observable. A metallic gate placed
100–200 nm above the droplet will reduce the potential
modulations by no more than 30%.

Let us now focus on a case where the droplet edge has
counterpropagating modes: �d � 2=3, �s � 0, and �o �
1. The �d � 2=3 to zero edge itself has counterpropagating
modes which leads to a disorder-dependent edge structure.
The clean 2=3 edge has an outer � � 1 mode and an inner
(counterpropagating) � � �1=3 mode [7,17]. But as
Ref. [6] predicts, in the disorder-dominated phase, the
effective low-energy degrees of freedom are a charge
mode with q � 2e=3, which gives a quantized Hall con-
ductance, and a counterpropagating neutral mode localized
when T � 0.
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FIG. 2 (color online). Periodicity of ground-state structure vs
flux through a �d � 2=5 droplet in a �s � 1=3 surrounding Hall
fluid. � � Esc

5Edc
is described in the text. Note the period is non-

universal unless one edge is very long compared to the other.
When �! 0 the periodicity is independent of the flux through
the surrounding Hall fluid and is equal to a universal value, 5�0.
Inset: Droplet edge charge in the universal limit vs flux for weak
and strong tunneling tR.
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FIG. 3 (color online). Potential created by a disk and a ring of
opposite charge equal to that of one electron. The dielectric
constant is assumed to be that for GaAs, � � 12. Inset: Different
form of the periodic voltage modulations depending on tunneling
tR between the droplet edge and the surrounding fluid edge with
d=R � 1:1 for a �d � 2=5 droplet in a �s � 1=3 surrounding
fluid. Subtracting a smooth background will lead to oscillations
like those in the inset of Fig. 2.
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The ‘‘surrounded droplet’’ setup allows an equilibrium
verification of the charge or neutral recombination sce-
nario. When flux is threaded through the �d � 2=3 droplet,
the edge charge relaxes through electron tunneling across
the vacuum. For the disorder-dominated edge, the edge
charge orbitals effectively consist of a single � � 2=3
mode as the neutral modes do not respond to flux. (This
requires the droplet edge to be long compared to the
recombination length of the neutral/charge modes, which
is sample dependent and finite even at T � 0.) Here, after
every 3�0=2 flux threading, the edge loses one electron
and can then discharge by an electron tunneling from the
�0 � 1 fluid. But for the clean phase, the flux dependence
of the edge charge is different. When �0 is threaded
through the droplet the clean 2=3 edge accumulates a �e
charge on the outer � � 1 mode and a e=3 charge on the
inner mode. In the limit of large �o � 1 edge length, an
electron from the outer edge tunnels in to lower the energy.
This continues when a second �0 is threaded, but when the
third �0 is threaded, the edge instead relaxes to its original
state by three e=3 inner mode excitations canceling one�e
outer mode excitation. This sequence is shown in Fig. 4.
Fourier transforming the signal should allow for a clear
identification of each case; one charge mode on the droplet
edge leads to one periodicity appearing, whereas the two
independent charge modes of the clean edge should exhibit
two periodicities. Other edges with counterpropagating
modes (such as �d � 3=5) are amenable to similar
considerations.

In this Letter we propose the surrounded droplet model
near a point contact to investigate universal properties of
composite edges. The periodic change of the droplet size
with flux is measured by its effect on the conductance on a
nearby point contact. We propose to use this effect to
explore the nature of the � � 2=3 edge, i.e., whether the
edge recombines into neutral and charged modes. This is
the first proposal that may be able to do so in equilibrium.
We assumed that the interior of all Hall droplets is gapped
and that the only compressible areas are at the boundaries,

neglecting the possibility that Hall droplets may break
down into incompressible and compressible regions [18].
With sufficient disorder, all quasiparticle states in the in-
terior compressible regions are localized, keeping our
analysis intact. A back gate close to the sample, however,
will avoid this complication altogether, with the relevant
length scale being of order 200 nm, i.e., comparable to the
distance between the (in-plane) front gate in Ref. [18] and
the outer edge of the Hall droplet. This will impose a rather
uniform chemical potential on the electronic fluid and
hamper the creation of compressible domains, but should
still allow sufficient potential modulation at the point con-
tact to observe the predicted effects.
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FIG. 4 (color online). Comparison of two different phases of
the �d � 2=3 edge in the �s � 0, �o � 1. Top: Electron transfer
vs flux through the droplet. Bottom: Droplet edge charge vs flux
through the droplet. The microscopic edge structure determines
the flux dependence of the charge transfer and electrical poten-
tial created at a nearby point contact, as in Fig. 1.
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