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We propose that recent transport experiments revealing the existence of an energy gap in graphene
nanoribbons may be understood in terms of Coulomb blockade. Electron interactions play a decisive role
at the quantum dots which form due to the presence of necks arising from the roughness of the graphene
edge. With the average transmission as the only fitting parameter, our theory shows good agreement with
the experimental data.
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Graphene, a two-dimensional allotrope of carbon on a
honeycomb lattice, was isolated a few years ago [1], creat-
ing great excitement in the physics community due to its
close connections to high-energy particle physics [2,3] and
its tantalizing possible technological applications [4,5]. It
is now experimentally established that a great deal of the
properties of graphene [6] can be described in terms of
noninteracting (or weakly interacting) linearly dispersing
Dirac quasiparticles [7,8]. The only accepted exception
may be when graphene is subject to strong magnetic fields
in the quantum Hall regime [9], when the electronic kinetic
energy is quenched by the appearance of Landau levels,
and the fourfold degeneracy of the Landau levels is split by
electron-electron interactions [10,11]. Nevertheless, in the
absence of an applied magnetic field, because of the van-
ishing of the density of states for Dirac fermions in two
dimensions [12], the electrons in graphene interact through
strong, essentially unscreened, long-range Coulomb inter-
actions [13–16]. The fact that Coulomb interactions do not
show up in bulk experiments remains a puzzle in the
physics of graphene.

Recent experiments on the electron transport properties
of lithographically patterned graphene nanoribbons have
shown the existence of an energy gap near the charge
neutrality point [17]. The size of the gap Eg is inferred
from the nonlinear conductance at low temperatures and is
found to decrease with the ribbon width W following the
approximate law Eg � �=�W �W��. This result seems to
correlate with a conductance behavior G � ��W �W0�,
since W� � W0 ’ 16 nm for the same sample at tempera-
ture T � 1:6 K. In the absence of interaction effects, the
energy gaps between subbands in a graphene ribbon should
scale inversely with the ribbon width, Eg � @vF=W, where
vF � 106 m=s � 0:66 eV� nm� @

�1 is the Fermi veloc-
ity in graphene [6]. Nevertheless, this estimate leads to
gaps which are smaller than those observed experimentally
(note that, for widths of about 20 nm, the experimental
gaps are larger than 0.1–0.2 eV). This result has led to the
suggestion that the effective transport width is reduced

with respect to the nominal width W by an amount W� �
W0 due to the existence of structural disorder at the edges
or to a systematic inaccuracy in the determination of the
geometrical width caused by overetching beneath the etch
mask [17]. On the other hand, it has been shown that
graphene quantum dots as large as 25 �m (at low tem-
peratures), and as small as 40 nm (at room temperature),
show Coulomb blockade effects [6] indicating that electron
interactions become stronger as the dimensions of gra-
phene sheets are reduced.

In the present work we argue that the main results of
Ref. [17] can be naturally explained as due to Coulomb
blockade effects originated by the roughness at the edges
of graphene nanoribbons. This roughness occurs naturally
in graphite samples, as has been seen in scanning tunneling
microscopy [18], leading to the localization of charge at
the edges and the formation of electronic puddles [19]. As
depicted in Fig. 1, disorder at the edges of a graphene
ribbon also leads to the formation of ‘‘necks’’, causing an
abrupt reduction in the number of conducting channels and
thus to a large increase in the impedance along the gra-
phene sheet. This results in the electric isolation of nano-
scale size regions, or ‘‘dots’’, where the electrons become
temporally confined. Within this picture, Coulomb block-
ade [20–24] results from the electron transport from dot to
dot through graphene necks.

In our analysis, we will follow the standard theory of
Coulomb blockade effects, neglecting the electronic level
spacing within the grains. Note that graphene states delo-
calized throughout a region of linear size W show level
spacings of order @vF=W, which is the same scaling be-
havior followed by the charging energy of a grain of size
W, e2=W. It seems likely, however, that the rough edges of
the samples studied in [17], as well as the internal lattice
defects, can lead to a variety of partly or fully localized
states at energies close to the Fermi level, reducing the
electronic level spacing [4,25–27].

In the presence of Coulomb blockade characterized by a
renormalized charging energy E�c (which here we assimi-
late to Eg), the conductance between neighboring metallic
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dots is renormalized to lower values as the energy or
temperature scale is reduced [28–30]. This renormaliza-
tion begins to be appreciable at temperatures T & Ec=kB,
where Ec is the charging energy associated to the geomet-
ric capacitance of the dot. A perturbative analysis, valid for
relatively high temperatures such that T � Ec=kB, leads to
a conductance given by:

 G � G0 �GQc ln
�
Ec
kBT

�
; (1)

where c � 2 and G0 � 4GQNch� is the noninteracting
conductance (we include spin and valley degeneracy),
GQ � e2=h � 38:7 �S being the quantum of conduc-
tance, Nch � kFW=� the number of transverse orbital
channels, and � the average transmission per channel.
Equation (1) is valid when the transmission per channel
is low, �	 1, although the total conductance can take
arbitrary values. A similar expression can be obtained in
the limit � & 1, provided that none of the channels has
perfect transmission [31]. In the latter case, the constant c

in Eq. (1) takes the value c � 8=�2. Within the relatively
narrow range of widths and temperatures considered in
Ref. [17], the logarithm in Eq. (1) can be taken as a
constant of order unity, leading to the approximate expres-
sion:

 G ’ �4GQkF�=���W �W0�; (2)

where W0 � �c=4kF�.
The experimental dependence of G on W can be used to

estimate the average transmission �. Figure 2 of Ref. [17]
indicates that, at room temperature, and for a gate voltage
Vg � VDirac � �50 V, a change in conductance �G �
80 �S takes place if the width changes by �W � 40 nm.
This yields W0 � 40 nm. The corresponding hole density
in this experiment is n � 3:6� 1012 cm�2, which implies
that k�1

F � 1=�
���
n
p
� 1:7 nm. These experimental results

are consistent with Eq. (2) if the average transmission per
channel is � � 0:07. The total number of channels, for a
widthW � 40 nm, is 4Nch � 4kFW=� � 30. The average
transmission probability found here is consistent with
tight-binding calculations for wedge shaped graphene con-
strictions [32] (see also [33,34] ).

The analysis which at high temperatures leads to Eq. (1)
also shows that, at low temperatures, the effective charging
energy is renormalized by virtual jumps of the electrons
across the junction, leading to:

 Eg � Ece
�G=cGQ � Ece

�4Nch�=c � Ece
�4kFW�=�c; (3)

where Ec is the charging energy for the completely isolated
dot. It seems reasonable to assume that Ec is determined by
the nominal ribbon width W, Ec � e2=W since that is the
size of a typical puddle which is isolated from the rest of
the ribbon through a contact (see Fig. 1). This contact acts
as the bottleneck which determines the conductance of the
graphene nanoribbon. This fact does not preclude, how-
ever, the possibility of further structure in the I-V charac-
teristic which could be induced by the presence of other
dots.

The capacitance of the grains is also modified by the
presence of metallic leads and gates. The leads, and the
regions of the quasi-one-dimensional ribbon at distances
greater than W from the island considered, do not change
appreciably the charging energy, as a one-dimensional
charge distribution does not screen an electrostatic poten-
tial. The screening of a metallic gate at a distance d from
the island can be analyzed, when d
 W, by assuming that
the charge in the island induces an image charge. The
charging energy is changed to Ec � e

2=W � e2=2d. In
the following, we neglect the second term, as W �
20–100 nm and typical distances to the gate [1] are d�
300 nm. Charging effects should be strongly suppressed
when the distance to the metallic gate is comparable, or
smaller, than the width of the ribbon.

NECK

DOT

FIG. 1. Illustration of a graphene ribbon with a disordered
edge leading to the formation of necks and dots along the ribbon.
Coulomb blockade takes place when the charge moves from dot
to dot.
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Finally, we have identified the value of the Coulomb gap
at low temperatures with the gap in the I-V characteristics
measured in Ref. [17]. Note that the argument in the
exponent in Eq. (3) becomes 4kFW�=�c � 0:8 for W �
40 nm, which leads to an appreciable renormalization of
the geometrical charging energy by virtual charge fluctua-
tions (see [35] for similar effects in a different granular
system). We note that Ec � 4 meV for W � 40 nm.

We can also write Eq. (3) as:

 Eg�W� �
e2

W
e�W=W0 ; (4)

where W0 is the length scale used in Eq. (2). Thus, as a
function of W, E�1

g takes low values for W 	 W0 while
experiencing a sharp rise for W * W0. We note that,
E�1
g �W0� � 5� 10�3 �meV��1, substantially smaller that

the unit scale used in Fig. 3(e) of Ref. [17]. One can see
from Fig. 2 that Eq. (4) explains the experimental data of
Ref. [17] within its error bars. A comparison between the
expression E�1

g � BWeCW , obtained from Eq. (4) and the
data in [17] yields C�1 � 43 nm, which is in good agree-
ment with our theoretical estimate forW0. One also obtains
B � 10�3 �meV� nm��1, which agrees reasonably with
e�2 � 6:95� 10�4 �meV� nm��1. The fact that B�1 is
smaller than e2 can be partly attributed to the screening
effect of the gate.

Finally, we note some trends which provide additional
qualitative support to the Coulomb blockade picture.
Figures 3(a)–3(d) of Ref. [17] show the differential con-
ductance as a function of the bias and gate voltage.
Electron-hole symmetry explains the symmetric behavior
around a value of Vg which must be identified with the
neutrality point. The maximum vertical width of the dark
(low differential conductance) zone must be identified with
the gap Eg�W�, which clearly decreases with W, in quali-
tative agreement with Eq. (4). On the other hand, varying

Vg is equivalent to changing kF. Equation (3) shows that
the variation of the gap and the differential conductance as
a function of kF must be faster for large values of W, in
good agreement with the experimental results.

The experiment of Ref. [17] also shows that the linear
(Vb ! 0) conductance depends weakly on the gate voltage
at the neutrality point, where kF ! 0. Our analysis predicts
that the linear conductance depends on gate voltage
through the product kF�. The well-known existence of a
minimum in the bulk conductivity can be translated, within
a Drude picture, into kF� tending to a constant value as
kF ! 0. This trend is consistent with the experimental
observation described above. The insensitivity of the con-
ductance to the gate voltage can also be expected to occur
when puddles are formed with a finite (positive or nega-
tive) charge density [36–38].

The analysis presented so far describes the observed low
temperature gap in transport measurements in terms of the
features of isolated junctions, neglecting effects associated
to interference effects between multiple junctions. We do
not expect these effects to change significantly the analy-
sis. Coulomb blockade leads to the suppression of phase
coherence between successive tunneling events. The scal-
ing equation (1) is valid for granular arrays, and transport
gaps in these systems have the same functional dependence
as in single grains [39]. Hence, in a disordered system the
transport properties will be dominated by the junctions
with the highest gaps. Note also that inelastic cotunneling
processes [40,41], which influence the conductance of
single junctions at low temperatures, and which are not
considered here, are strongly suppressed in junction arrays.

In conclusion, we find that the gaps observed in con-
ductance measurements on graphene nanoribbons in
Ref. [17] can be explained as Coulomb gaps due to the
existence of internal junctions between graphene islands,
where the transmission, for all transverse channels, is less
than one. We identify the gaps observed in transport mea-
surements as the effective charging energy of the islands,
renormalized by the charge fluctuations at the junctions.
We further simplify the model by assuming that the trans-
port properties can be studied by analyzing a single repre-
sentative junction. The model leads to a simple dependence
of the gaps on material parameters, such as the carrier
concentration, or the width of the ribbons. We obtain a
reasonable agreement with the experiments.

Charging effects are mostly determined by the geometry
of the system and by the amount of screening of the
Coulomb interaction. The explanation proposed here im-
plies that the gaps observed in transport measurements
should be weakly affected by static disorder or by changes
in the electron interference properties, such as those in-
duced by an applied magnetic field. On the other hand, we
expect that charging effects should be suppressed by me-
tallic gates at distances from the ribbon which are smaller
than the ribbon width.

0 10 20 30 40 50 60 70

W nm

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1
E

g
m

eV
1

FIG. 2. Comparison between experimental data of Ref. [17]
and the theoretical result (full line): E�1

g � BWeCW , obtained
from Eq. (4) with B � 0:001 �meV� nm��1 and C �
0:023 nm�1.
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