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We perform self-consistent quantum transport calculations in open quantum dots taking into account
the effect of electron interaction. We demonstrate that, in the regime of the ultralow temperatures
2�kBT & � (� being the mean-level spacing), the electron interaction strongly smears the conductance
oscillations and thus significantly affects their statistics. Our calculations are in good quantitative
agreement with the observed ultralow temperature statistics of Huibers et al. [Phys. Rev. Lett. 81,
1917 (1998)]. Our findings question a conventional interpretation of the ultralow temperature saturation of
the coherence time in open dots which is based on the noninteracting theories, where the agreement with
the experiment is achieved by introducing additional phenomenological channels of dephasing.
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Introduction.—Decoherence of quantum states due to
interaction with the environment represents one of the
fundamental phenomena in quantum physics. In low-
dimensional semiconductor structures such as quantum
dots, wires, and antidots, the decoherence processes are
central to electronic transport and spin or charge manipu-
lation. A temperature dependence of the phase coherence
time in open quantum dots �’ has been a focus of signifi-
cant experimental activity during the past decade [1–8].
The experiments indicate that several mechanisms might
be simultaneously responsible for the electron decoher-
ence, including a large [9] and a small (Nyquist) [10]
energy-transfer scattering. Surprisingly, practically all ex-
periments report a remarkable effect of a saturation of the
phase coherence time at ultralow temperatures T &

100 mK. The origin of this effect is not understood, and
at present no theory is available to address the electron
decoherence in confined ballistic systems. It should be
noted that a similar effect of the saturation of the phase
coherence time is also found in nanoscaled metallic wires,
and the origin of this saturation also remains open and
highly debated [11].

Experimental determination of the dephasing time �’ is
typically based on predictions of the random matrix theory
(RMT) [12] for the statistics for quantum transport such as
the mean and variance of conductance oscillations, the
weak localization corrections, the probability distribution
of conductance, and others [12–14]. The RMT is essen-
tially a noninteracting theory relying on a one-electron
description of quantum transport. In order to fit the experi-
mental data, the dephasing time �’ is included as a phe-
nomenological parameter of the theory typically within a
Büttiker’s fictitious voltage probe or as an imaginary po-
tential in the Hamiltonian [12,14]. A deviation of the
experimental data from the predictions of a purely coherent
model of noninteracting electrons is then attributed to
inelastic scattering due to dephasing which is extracted
using �’ as a fitting parameter.

How does the electron interaction affect the conductance
oscillations in the open dots? This question was posed in
several theoretical studies with somewhat conflicting con-
clusions [15–18]. For example, Brouwer and Aleiner [15]
argued that the Coulomb interactions enhance the weak
localization and increase conductance fluctuations,
whereas Brouwer, Lamacraft, and Flensberg [16] ques-
tioned these conclusions. None of the above studies, how-
ever, addressed the problem of the low-temperature
saturation of the coherence time. In the present Letter,
we, based on the first-principles self-consistent quantum
transport calculations, study the effect of the electron
interaction on the probability distribution of the conduc-
tance P�G� in open dots. We demonstrate that, for ultralow
temperatures 2�kBT & � (� being the mean-level spac-
ing), the distributions of P�G� are strikingly different for
noninteracting and interacting electrons. We compare our
calculated statistics for interacting electrons with the cor-
responding experimental results of Huibers et al. [5] and
find a good quantitative agreement. Our results therefore
strongly indicate that a deviation of the experimental data
from the RMT predictions in the regime of ultralow tem-
peratures can be accounted for by the electron interaction
alone without introducing additional channels of the in-
elastic scattering. Our findings thus question the conclu-
sion concerning the saturation of the �’ in open dots which
is obtained by neglecting electron interaction and under the
assumption that the above deviation is due to the inelastic
scattering only.

Model.—We consider an open quantum dot defined by
split gates in a GaAs heterostructure; see Fig. 1. The
Hamiltonian of the whole system (the dot plus the semi-
infinite leads) can be written in the form H � H0 � V�r�,
where H0 � ��@

2=2m��f� @@x�
eiBy
@
�2 � �@2=@y2�g is the ki-

netic energy in the Landau gauge, and the total confining
potential V�r� � Vconf�r� � VH�r� is the sum of the elec-
trostatic confinement (including contributions from the top
gates, the donor layer, and the Schottky barrier) and the
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Hartree potential (see [18,19] for details):
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where n�r� is the electron density, the second term corre-
sponds to the mirror charges situated at the distance b from
the surface, and "r � 12:9 is the dielectric constant of
GaAs. The dot and the leads are treated on the same foot-
ing; e.g., the Coulomb interaction and the magnetic field
are included both in the lead and in the dot regions. We
consider the spinless electrons because in relatively large
dots as those studied here the electrons are spin degenerate
[20,21]. We also neglect the exchange and correlation
effects, which have been shown to affect the calculated
conductance only marginally [18]. Note that the role of the
electron interaction in the resonant-tunneling heterostruc-
tures (described within the Hartree approximation) was
discussed in Ref. [22].

To outline the role of the electron interaction, we also
calculate the conductance of the open dot in the Thomas-
Fermi (TF) approximation, where the self-consistent elec-
tron density is given by the standard TF equation. This
approximation does not capture the quantum-mechanical
quantization of the electron motion and hence corresponds
to a noninteracting one-electron approach, where, how-
ever, the total confinement is given by a smooth realistic
potential; see [18] for details.

The magnetoconductance through the quantum dot in
the linear response regime is given by the Landauer for-
mula G � ��2e2=h�

R
dET�E��@fFD�E� EF�=@E�. A de-

tailed description of the self-consistent conductance
calculation (as well as the validity and applicability of
the method and the Hamiltonian) are given in our previous
publications [18,19]. Note that the present approach cor-
responds to the ‘‘first-principles’’ magnetoconductance
calculation (within the effective mass approximation) that
starts from a geometrical layout of the device, is free from
phenomenological parameters, and does not rely on model
Hamiltonians whose validity is poorly controlled.

Results and discussions.—Figure 1(c) shows the con-
ductance of an open quantum dot calculated in the Hartree
and TF approximations (interacting and noninteracting
electrons, respectively) for T � 50 mK. The parameters
of the dot are indicated in Fig. 1 and are chosen close to
those studied experimentally by Huibers et al. [5]. All of
the results discussed in this Letter correspond to one prop-
agating mode in the quantum point contact (QPC) open-
ings. The striking difference between the conductance
curves is clearly manifested in a strong suppression of
the high-frequency components of the oscillations for the
interacting electrons in comparison to the noninteracting
case. Thus, the electron interaction causes an apparent
smearing of the conductance oscillations, which is similar
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FIG. 1 (color online). (a) A schematic layout of a split-gate
open quantum dot defined in a GaAs heterostructure. The
geometrical size of the dot is 660	 520 nm; the width of the
leads is 540 nm. The width of the QPC openings is 100 nm
(which corresponds to one propagating mode). The widths of the
cap, donor, and spacer layers are 14, 36, and 10 nm, respec-
tively); the donor concentration is 0:6	 1024 m�3. (b) A repre-
sentative self-consistent electron density in the dot [note that the
densities for the interacting (Hartree) and noninteracting (TF)
electrons are not distinguishable on the scale of the figure].
White dashed lines indicate a geometry of the metallic gates.
(c),(d) The calculated conductance of the dot for interacting
(Hartree) and noninteracting (TF) electrons as a function of the
gate voltage Vg for (a) T � 50 mK and (b) T � 300 mK; B �
20 mT. [The conductance curves for interacting electrons are
shifted by e2=h.] (e) Resonant energy structure (i.e., positions of
the peaks in the DOS as a function of the Vg) for different
temperatures; a calculated DOS is shown for Vg � �0:5 V; the
Fermi energy is set EF � 0. [Note that the resonant energy
structure for noninteracting electrons is practically undistin-
guishable for the given temperatures]. The inset shows the
derivative of the Fermi-Dirac distribution function for T �
0:05 and 0.3 K and the transport window 2�kBT. The bar
indicates the mean-level spacing separation � � 0:041 meV
corresponding to the actual dot size 
460	 370 nm2.
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to the effect of the temperature or inelastic scattering. This
smearing of oscillations is caused by the pinning of reso-
nant levels to the Fermi energy in the vicinity of resonances
[18]. This is illustrated in Fig. 1(e), which shows an evo-
lution of the peak position of the resonant energy levels. In
the vicinity of the resonances, the density of states (DOS)
of the dot is enhanced such that electrons with the energies
close to EF can easily screen the external potential. This
leads to the ‘‘metallic’’ behavior of the system when the
electron density in the dot can be easily redistributed to
keep the potential constant. As a result, in the vicinity of a
resonance, the system only weakly responds to the external
perturbation (change of a gate voltage, magnetic field,
etc.); i.e., the resonant levels becomes pinned to the
Fermi energy (see Ref. [18] for a detailed discussion of
the pinning effect). For noninteracting electrons, the non-
linear screening and hence the pinning effect are absent,
such that the successive dot states sweep past the Fermi
level in a linear fashion; see Fig. 1(e).

The pinning of resonant levels drastically affects the
conductance probability distribution P�G�. Figure 2(a)
shows P�G� calculated for interacting and noninteracting
electrons for the cases of a time-reversal symmetry � � 1
(B � 0) and a broken time-reversal symmetry � � 2 (B �

0) for T � 50 mK. The time-reversal symmetry is broken
by the application of a magnetic field B * �0=A, where
�0 � h=e is the flux quantum and A is the dot area
(typically, B
 20–40 mT). Figure 2(a) shows that the
statistics of the conductance distribution P�G� for the
case of noninteracting electrons closely follow the corre-
sponding RMT predictions for �’ � 0 and T � 0 [12,13]
for both � � 1 and � � 2. At the same time, the statistics
for the interacting electrons are strikingly different from
those for the noninteracting case. Thus, due to the effect of
the electron interaction, the ultralow-temperature statistics
of the conductance oscillations of quantum dots are not
described by the RMT.

As the temperature increases, the difference between the
conductances G � G�Vg� as well as between the corre-
sponding conductance distributions P�G� for interacting
and noninteracting electrons diminishes; see Fig. 2(b)
(T � 100 mK). For a sufficiently high temperature, this
difference disappears; see Figs. 1(d) and 2(c) (T �
300 mK). The reason for that is that the temperature
strongly reduces the effect of resonant level pinning.
Indeed, when the transport energy window 
2�kBT [de-
termined by the condition when the derivative of the
Fermi-Dirac distribution is distinct from zero; see
Fig. 1(e)] exceeds the mean-level spacing � � 2�@2=m �
A (A being the dot area), the conductance is mediated by
several levels. As a result, several levels always contribute
to screening at the same time, and hence the screening
efficiency of the dot is affected very little when a gate
voltage or magnetic field is varied. A quenching of the
pinning for temperatures 2�kBT * � due to suppression

of the resonant level screening is illustrated in Fig. 1(e)
(T � 300 mK). Note that, for the dot under consideration,
the condition 2�kBT � � corresponds to T � 100 mK.
Thus, for 2�kBT * �, the effect of electron interaction on
the conductance is strongly suppressed such that the con-
ductances and their probability distributions for interacting
and noninteracting electrons are practically the same.

FIG. 2. Probability distribution of the conductance P�G� for
interacting and noninteracting electrons for different tempera-
tures for the cases of the time-reversed symmetry (� � 1) and
the broken time-reversed symmetry (� � 2). The experimental
data are adapted from Ref. [5]. Solid lines in (a) correspond to
the predictions of the RMT (T � 0, no dephasing).
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The probability distribution P�G� in open quantum dots
with one propagating channel in the leads was studied by
Huibers et al. [5]. Figure 2(a) shows that, in the regime of
the ultralow temperatures T � 50 mK, the calculated con-
ductance statistics for interacting electrons agree quite well
with the corresponding experimental distribution P�G� for
both � � 1 and � � 2. The measured conductance distri-
bution P�G� in Ref. [5] was well described by the RMT
predictions where the inelastic scattering was introduced
using �’ as a fitting parameter. Our results, instead, dem-
onstrate that, once the electron interaction is accounted for,
the agreement with the experiment for 2�kBT & � is
achieved without assuming additional inelastic scattering
channels. We thus conclude that, for the regime of ultralow
temperatures, the experimentally inferred value of �’
might be greatly underestimated, which implies that the
dephasing time does not saturate. As the temperature in-
creases, the calculated conductance distribution starts to
deviate from the experimental statistics; see Fig. 2(b) and
2(c). As discussed above, for the temperature 2�kBT * �,
the electron interaction practically does not affect the
conductance oscillations and their statistics. Thus, for
2�kBT * �, the difference between the calculated and
the experimental statistics can be attributed to the effect
of dephasing. Our criterion for the transition temperature
2�kBT 
� is consistent with the findings reported by
Bird et al. [2,7] and Clarke et al. [3], who find a saturation
behavior of �’ at transition temperatures Tonset near the
mean-level spacing. A relation between Tonset and � was
also discussed by Hackens et al. [8]. However, some ex-
periments [6] do not show a clear relation between Tonset

and �, such that more systematic studies are needed in
order to prove the connection between Tonset and �.

We stress that our calculations are performed for purely
coherent electrons. The dephasing effects can be easily
included in our model phenomenologically through an
imaginary potential in the Hamiltonian [12]. We do not
provide a systematic fit of the experiment simply because
of a computational burden related to this task: Each point
on the conductance plot requires up to 1 h of processor
time. We note, however, that such a fit is outside the scope
of our study, where we focus on the role of the electron
interaction in a regime of the ultralow temperatures
2�kBT & �.

The findings reported in this Letter outline the impor-
tance of the first-principles self-consistent quantum trans-
port calculations for open quantum dots. Indeed,
accounting for both global electrostatics through the
Hartree potential [Eq. (1)] and the quantum-mechanical
quantization in a self-consistent way is essential for reveal-
ing of the pinning effect that causes a drastic difference in
the conductance of the interacting and noninteracting elec-
trons. Note that this effect would not be captured in ap-
proaches utilizing model Hamiltonians (like those of

Refs. [15,16], where the electron interaction is accounted
for through the classical capacitance charging).

To conclude, we demonstrate that, for ultralow tempera-
tures 2�kBT & �, the electron interaction drastically
changes the statistics of the conductance oscillations in
open dots, leading to a significant departure from the
conventional RMT description of noninteracting electrons.
Our results demonstrate that the deviation of the observed
statistics at ultralow temperatures from the RMT predic-
tions can be accounted for by the electron interaction
alone, such that a conclusion of the dephasing time satu-
ration based on the noninteracting electron picture should
be revised.

We thank J. P. Bird for discussion and valuable
comments.

[1] C. M. Marcus et al., Phys. Rev. B 48, 2460 (1993).
[2] J. P. Bird et al., Phys. Rev. B 51, 18 037 (1995).
[3] R. M. Clarke et al., Phys. Rev. B 52, 2656 (1995).
[4] A. G. Huibers et al., Phys. Rev. Lett. 81, 200 (1998).
[5] A. G. Huibers et al., Phys. Rev. Lett. 81, 1917 (1998).
[6] A. G. Huibers et al., Phys. Rev. Lett. 83, 5090 (1999).
[7] D. P. Pivin et al., Phys. Rev. Lett. 82, 4687 (1999).
[8] B. Hackens et al., Phys. Rev. Lett. 94, 146802 (2005).
[9] G. F. Giuliani and G. Vignale, Quantum Theory of the

Electron Liquid (Cambridge University Press, Cambridge,
England, 2005).

[10] B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky,
J. Phys. C 15, 7367 (1982).

[11] P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev.
Lett. 78, 3366 (1997); P. Mohanty and R. A. Webb, ibid.
91, 066604 (2003); J. Wei, S. Pereverzev, and M. E.
Gershenson, ibid. 96, 086801 (2006).

[12] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997);
Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).

[13] H. U. Baranger and P. A. Mello, Phys. Rev. Lett. 73, 142
(1994); R. A. Jalabert, J.-L. Pichard, and C. W. Beenakker,
Europhys. Lett. 27, 255 (1994).

[14] H. U. Baranger and P. A. Mello, Phys. Rev. B 51, 4703
(1995); P. W. Brouwer and C. W. J. Beenakker, Phys. Rev.
B 55, 4695 (1997).

[15] P. W. Brouwer and I. L. Aleiner, Phys. Rev. Lett. 82, 390
(1999).

[16] P. W. Brouwer, A. Lamacraft, and K. Flensberg, Phys. Rev.
Lett. 94, 136801 (2005).

[17] K. M. Indlekofer et al., J. Phys. Condens. Matter 15, 147
(2003).

[18] S. Ihnatsenka, I. V. Zozoulenko, and M. Willander, Phys.
Rev. B 75, 235307 (2007).

[19] S. Ihnatsenka and I. V. Zozoulenko, Phys. Rev. B 76,
045338 (2007).

[20] J. A. Folk et al., Phys. Rev. Lett. 86, 2102 (2001).
[21] M. Evaldsson et al., Europhys. Lett. 68, 261 (2004);

M. Evaldsson and I. V. Zozoulenko, Phys. Rev. B 73,
035319 (2006).
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