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Negative specific heat is a dramatic phenomenon where processes decrease in temperature when adding
energy. It has been observed in gravo-thermal collapse of globular clusters. We now report finding this
phenomenon in bundles of nearly parallel, periodic, single-sign generalized vortex filaments in the
electron magnetohydrodynamic model for the unbounded plane under strong magnetic confinement. We
derive the specific heat using a steepest-descent method and a mean-field property. Our derivations show
that as temperature increases, the overall size of the system increases exponentially and the energy drops.
The implication of negative specific heat is a runaway reaction, resulting in a collapsing inner core

surrounded by an expanding halo of filaments.
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While Ref. [1] has proven that systems that are not
isolated from the environment must have positive specific
heat, the specific heat in isolated systems can be negative
[2]. Negative specific heat is an unusual phenomenon first
discovered in 1968 in microcanonical (isolated system)
statistical equilibrium models of gravo-thermal collapse
in globular clusters [3]. In gravo-thermal collapse, a dis-
ordered system of stars in isolation undergoes a process of
core collapse with the following steps: (1) faster stars are
lost to an outer halo where they slow down, (2) the loss of
potential (gravitational) energy causes the core of stars to
collapse inward some small amount, and (3) the resulting
collapse causes the stars in the core to speed up. If one
considered the ‘“‘temperature” of the cluster to be the
average speed of the stars, this process has negative spe-
cific heat because a loss of energy results in an increase in
overall temperature.

In the intervening four decades, negative specific heat
has been observed in few other places. In a magnetic fusion
system or other thermally isolated plasma, should negative
specific heat exist, the related runaway collapse could have
profound implications for fusion where extreme confine-
ment is critical to a sustained reaction.

Our results have general applicability to vortex systems.
However, in this Letter, we address a plasma model known
as the electron magnetohydrodynamic (EMH) model,
where we report finding negative specific heat.

Typically, magnetohydrodynamic plasma models are
two-fluid models, requiring equations governing the elec-
tron motion and equations governing the ion motion
coupled together [4]. The EMH model bypasses the two-
fluid model by representing the electron fluid and the
magnetic field as a single, generalized fluid with a neutral-
izing ion background that is stationary on the time scale
chosen.

The EMH model takes the magnetic field B=V X A
and the charged fluid vorticity @ = V X v and combines
them into a general vorticity field {) = V X p where the
generalized momentum p = mv — ¢A, m is the electron
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mass, —e is the electron charge, v is the fluid velocity field,
and A is the magnetic vector potential field. For a brief
overview of the model, see Ref. [4]. A detailed model
discussion can be found in Ref. [5].

Our goal is to find the specific heat of this vortex model
in statistical equilibrium given an appropriate definition for
energy and a microcanonical (isolated) probability distri-
bution. Our approach is to describe the statistical behavior
of a large number of discrete, interacting vortex structures
and consider the limiting case.

The first step is to modify the continuous vorticity field
) such that it describes a large number N of discrete vortex
filaments. Therefore, we assume that () has a large number
of periodic filaments that are nearly parallel to the z axis.
The filaments are very straight because of strong magnetic
confinement and angular momentum. The period L is
assumed to be unity, L = 1, without loss of generality
since all other distances and distance-dependent quantities
can be scaled by L.

The vorticity field, which depends on space, r € R?,
now looks like:

N oo
2 =Y [ arliote - r(2) (1)
i=1

wherer = (x, y, ) and r; = (x;, y;, z;)- Periodicity requires
that r;(0) = r;(1). Therefore, we assume that the discreti-
zation of r into ) ,r; has this property in Eq. (1). Because of
the nearly parallel constraint, the arclength 7 has the
property that 7 ~ z; V i. For simplicity, we will represent
ri(r) = (x,y,7) as a complex number ;(7)=
x;(7) + iy (7).

In our analytical approach, it is easier to start with a
finite number of filaments and take the limit N — oo later,
keeping total vorticity A = [ps Q(r)dr, constant by re-
scaling. This is known as a nonextensive thermodynamic
limit approach because the overall vortex strength stays
constant even as the number of vortex filaments increase
towards infinity.
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We use an approximate model for vortex behavior
known as the local-induction approximation (LIA), useful
for nearly parallel filaments, combined with a two-
dimensional logarithmic interaction. Heuristically, this
model comes from two separate results: One result, that
of Ref. [6], shows that a discrete field of perfectly parallel
vortices has a logarithmic interaction. Another result for a
single filament in 3D, that of Ref. [4], is a first order
approximation for the motion of fluid filaments, extended
to the EMH model. This LIA approximation, derived from
the Biot-Savart law of magnetic or velocity induction for
filaments of magnetism or vorticity, depends on the binor-
mal vector of the filament curve in 3-space causing
Brownian variations.

The combination of the two results of Refs. [4,6] yields
the familiar London free energy of type-II superconductors
[7], equally valid for generalized vorticity [4]:

. N
Ey = aj;) dTZF,-/zlalp,.(r)/arl?

N N
f ZE I\T;logly () — (D), (2)

where « is the vortex elasticity in units of energy/length.
The generalized angular momentum is

N
My =3, fo Larlg(DP. 3)

I'; is the vortex circulation. From this point on, we assume
the vortex circulations are all scaled to unity, I'; = 1 V i.

Although we say the London free energy, we note that
these vortex filaments are generalized and not purely flux
lines. Furthermore, the plane is unbounded, not periodic.
Other sources for this vorticity description as well as others
can be found in Refs. [8—12]. We are the first to apply it to
the EMH model to our knowledge.

For our isolated, classical system, the energy and angu-
lar momentum plus magnetic moment are conserved, giv-
ing rise to the following probability distribution for the
filaments in equilibrium:

P(S) = Zﬁlﬁ(NHo - EN - 171‘4]\])6(]\71e2 - MN)’ (4)

where H, is the total “enthalpy’” per vortex per period of
the plasma, s is the complete state of the system, and Z =
[ds6(NHy — Ey — pMy)8(NR* — My) is a normalizing
factor called the partition function. Here Ey is the energy
functional and M is the angular momentum. It is our
intent to allow RZ, the size of the system,

R — lim <N—1 [ ! d7|¢i(7)|2>, )
N—oo 0

to be determined by other parameters in the system and
keep enthalpy and pressure p fixed.

The size of the configuration space (partition function) Z
cannot be found in closed form by any known analytical

methods. Since our aim is an explicit expression for
specific heat, we need to find a closed form approximation
of Z.

To simplify the equations, we combine the large number
of vortices into two average or “‘mean’’ vortices, which
results in a mean vorticity field. This is the “mean-field”
approach common in statistical mechanics. Our mean vor-
tices are as follows: One mean vortex is a mean distance
from the origin. The other is the statistical center of charge
of all the filaments—a single, perfectly straight filament
fixed at the origin with strength of the remaining vortices,
N—1~N

Given a filament i and a filament j, the mean-field
approximation implies the following:

<|¢i—¢,»|>—»1/[ arlg P =gl ©)

where i is any filament index and the double bars, || - ||,
indicate £,-norm on the interval [0, 1].
The energy function now reads as follows:

B= [ dfz[ | |- F ettt ] )

This assumption makes all vortices statistically indepen-
dent, and the statistics of all the vortex structures can be
found from those of one. We modify (4) and (3) appropri-
ately and drop primes.

In statistical mechanics of isolated systems, all equilib-
rium statistics can be determined from maximizing the
entropy. The entropy per filament Sy is defined by

e = fDl/f5(NH() — Ey — pNR»)S8(NR> — My). (8)

This definition implies

Sy = log[ [ DYS(NHy — Ey — pNRY)S(NR? — MN)}

()]

We have now set the stage to describe our derivation of
negative specific heat.

Given the space available, we proceed to outline, rather
than fully derive, our method of obtaining an explicit
formula for the maximal entropy of this mean-field system
in the nonextensive thermodynamic limit (as defined
above) from which we obtain an explicit, closed form
formula for the specific heat.

First, it is important to note that our approach relies
heavily on the steepest-descent methods in Ref. [13] and
spherical model approach in Refs. [14—17]. The works of
Refs. [10,18] have preceded and inspired this work in their
novel applications of the spherical model to barotropic
vorticity models on the sphere. These works laid the
ground for our derivation.

The steepest-descent and consequently spherical model
methods convert Dirac-delta functions into their Fourier-
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space equivalent integral representations. The procedure
for our derivation relies on two closely related facts: The
integral representation of the Dirac-delta function in a
microcanonical distribution, for example:

Bo+io
8(Nx — Nxp) = f 0 _ﬁ.eNB(X—xo)’ (10)
By—ico 27T

and the steepest-descent limit, again only an example:
L [Aotic dBeNBE—x0) = pBoli—x0) (1)

Bo—ico

which allows quantities such as entropy to be determined,

provided we can determine what (B, is, a method for

determining which Ref. [13] provides.

Using the first fact, we can convert the microcanonical
problem into the canonical problem by converting delta
functions into integrals and reordering the phase-space (/)
and parameter-space (/3) integrals to arrive at
B

? €BNHOZbath, (12)

eSN =
where
Zouth = f Dy FERINS(NR® — My)  (13)

is a canonical-like partition function for the system in an
external heat bath but with a microcanonical angular mo-
mentum constraint. In the infinite N limit, Z, 4, approaches
the canonical partition function [i.e., the same function but
without the Dirac-delta factor in the integrand of Eq. (13)],
making their use interchangeable in the limit. To convert
the microcanonical problem to a canonical one, one has to
prove that the integrals are finite, and indeed we can but do
not show it here.

The maximal entropy per filament per period, having the
form,

(Ey + pMy) =

fD¢(EN + pMy)6(NHy — Ey — PMN)5(NR2 — My)

Smax (Ho) = AlliqngoN*lSN, (14)

is where the limit comes into play.

Coulomb interactions have a problem in that as the
number of “particles” (in this case vortex filaments) grows
infinitely large, the interaction energy grows with the
square of the number of filaments. The solution is to
rescale the temperature, which in turn rescales the interac-
tion energy. Rescaling the temperature causes a chain of
necessary scalings to restore the balance so that other
quantities do not go to zero: B/ = BN, o’ = a/N, p' =
p/N, and H) = H,/N. These are reasonable because only
the interaction energy needs rescaling.

With all these scalings there are no more mathematical
obstructions, and the maximal entropy can be found by the
standard mathematical procedures in Refs. [13,14]. We
provide only the final formula obtained in view of space
constraints, but the procedure is quite straightforward once
the appropriate framework is set up:

IB/
Smax(Ho) = BoH{ + TO log(R?) — W — Byp'R?,
(15)
where
Bl2a/ + B/4a/2 + 32a/l[))/2pl
=2 G . (16)

8 a/ B62 pl ’
where the mean temperature B, is as yet unknown. This
entropy is exact within the mean-field assumption for N —
00,

By Ref. [13], we find the unknown multiplier B, by
relating the enthalpy per filament parameter H, to the
mean enthalpy, NH, = (Ey + pMy), where (-) denotes
average against Eq. (4).

By Eq. (4) the average enthalpy is given by

JDYS(NHy — Ey — pMy)S(NR*> — My) ’

7)

and, again going through some steepest-descent-based calculations given in Ref. [13], we find the formula,

FIG. 1 (color online). The specific heat
at constant pressure [Eq. (20)] for the
thermally isolated system is negative,
meaning that the constant pressure en-
thalpy per length [Eq. (18)] decreases
with increasing temperature. (Here o’ =
5 X 10° and p’ = 8 X 10*)
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FIG. 2 (color online). The mean square vortex position
[Eq. (16)] increases exponentially at high temperature, while it
is nearly constant at low temperature. (Here a = 5 X 10° and
p=8X10%)

o [ Bl 1
By =55~ 3 o e

exactly. We cannot give an explicit expression for B, be-
cause it is a root of a transcendental equation, but such is
unnecessary for the following negative specific heat result.

We define specific heat at constant generalized pres-
sure p,

+ B()p’R2> (18)

oH,
cp = _'8(2)6—,80’ (19)

and after evaluating with Eq. (18) and simplifying (drop-
ping primes and O subscripts)

B aB?
= — —-1]. 20
v (\/aﬁz(aﬁz +32p) ) .

Equation (20) is significant. It indicates that the specific
heat is not only negative for this system, but strictly nega-
tive if parameters are nonzero (Fig. 1). In the low-
temperature (large ) case, for constant field strength, R>
does not change significantly with temperature, indicating
that filaments are in a stable configuration for a large range
of low temperatures. Because the filaments do not move
relative to one another at low temperatures and the self-
induction is negligible, the enthalpy does not change. As
the temperature rises, the increase in internal entropy
causes a massive expansion in the overall size of the
system (Fig. 2). The strong magnetic field absorbs this
energy, but, since it is assumed to be an infinitely massive
reservoir able to maintain the enthalpy at H, the confine-
ment remains constant.

Only a local-induction approximation is necessary for
this analysis, even though 2D point vortices have no nega-
tive specific heat in equilibrium. The negative specific heat
here can be explained as a process: (1) a vortex’s Brownian
motion causes it or part of it to move away from the center,
(2) potential energy decreases, and (3) the vortices in the
center can move closer together and temperature increases.

As mentioned in the preceding paragraph, the negative
specific heat indicates a runaway reaction (i.e., the fixed
energy, fixed angular momentum equilibrium point is
metastable). Considering its similarity to gravo-thermal
collapse: We hypothesize that the metastable point could
have a collapse similar to globular clusters in which an
outer halo of columns separates from an inner core that
collapses in on itself, possibly resulting in nuclear fusion.
Further research will focus on answering this question, but
clearly 3D effects, even only a LIA, are crucial.
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