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Lyapunov Spectral Gap and Branch Splitting of Lyapunov Modes in a Diatomic System
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Lyapunov instability of a “diatomic’ system of coupled map lattices is studied and the dynamics of
Lyapunov modes (LMs) is compared with phonon dynamics. Similar to the phonon case mass differences
between neighboring sites induce gaps in the Lyapunov spectrum and LMs split into two types
correspondingly. An unexpected finding is that contrary to the phonon case a nontrivial threshold value
for the mass difference is required for the occurrence of the spectral gap and the splitting of LMs. A
possible origin of such a nontrivial threshold value of mass differences is suggested.
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Collective excitation is one of the most important con-
cepts in modern physics. For instance, vibrational normal
modes in a rigid crystal lattice, phonons, are known to play
an essential role for many physical properties of solids [1].
In the past, encouraged by the success of that concept in
solids, there have already been some attempts [2—4] to
extend the concept of phonons and to find their counterpart
in fluids. Such an idea may date back to Maxwell [2], who
suggested that the dynamics of liquids at short times is
similar to solids. One recent contribution to this line of
research consists in the so-called instantaneous normal
modes (INMs) [4], which are eigenvectors of the Hessian
matrix evaluated from instantaneous states of liquids. The
concept of INMs has been demonstrated successful in
many respects in understanding liquids dynamics [4].

Recently, the study of hydrodynamic Lyapunov modes
(HLMs) attracts a lot of interest [5—14] due to its potential
to connect the reduced description of a many-body system
to the microscopic information of its detailed dynamics
[15]. HLMs are long wavelength collective structures in
Lyapunov vectors (LVs) associated with near-zero
Lyapunov exponents [5]. Questions on the connection of
HLMs to other physical quantities were posed right after
their discovery. It has already been noticed that the appear-
ance of HLMs relies on the same mechanisms as phonons
and INMs, i.e., the spontaneous breaking of certain sym-
metries of the system Hamiltonians [6,9]. Moreover, all
three sets of modes, phonons, INMs, and HLMs, are related
to the Hessian matrix. According to the geometric theory
of Hamiltonian chaos [16], both phonons and HLMs rep-
resent certain eigendirections characterizing stabilities of
geodesics of certain manifolds with suitable metrics.
Similar to INMs the calculation of HLMs relies on
Hessian matrices evaluated from instantaneous states of
the system. HLMs, however, encode additional informa-
tion on the time correlations among these instantaneous
states. In view of these facts, it is natural to ask whether
there are connections between these modes and whether
HLMs are able to serve as the counterpart of phonons in
systems with strong anharmonic dynamics [17]. As a step
towards the understanding of such problems, we compare
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the dynamics of HLMs in a diatomic system with that of
phonons. It is known that in diatomic crystal lattices the
frequency spectrum of phonons has a gap and phonons split
into two branches, acoustic and optical ones, respectively.
Our current investigation demonstrates that, similar to the
phonon case, mass imparity may induce a gap in the
Lyapunov spectrum, and the two corresponding branches
of Lyapunov modes [18] behave acoustic- and optical-like,
respectively. A major difference between LMs and pho-
nons is, however, that a large enough mass difference
beyond a certain threshold value is necessary for the ap-
pearance of the gap in the Lyapunov spectrum and the
splitting of the modes.

We use here a simple model system of coupled map
lattices

vl = vl Elf@t —ul) = flul —ulH] (la)
ubyy = uf + vl (1b)

where f(z) is a nonlinear map, ¢ is the discrete-time index,
[ ={1,2,..., L}is the index of the lattice sites, and L is the
system size. The skewed tent map,

(4 for0=7<r,
f(Z)_{(l_Z/)/(l—r) forr=7 <1,

with z/ = z (mod 1), is adopted in the following numerical
simulations. Other choices of the function f(z), for in-
stance, the standard map f(z) = sin(z/27), yield qualita-
tively the same results as shown here; i.e., the form of f(z)
is not an essential factor for the considered problem. The
parameter €, precisely the quantity 1/€, plays the same
role as mass in mechanical systems and it takes the values
€, and €, for the odd and even lattice sites, respectively
[19]. In the following simulations €, = 1 is fixed and the
value € is tuned to study the influence of mass differences.
We expect that the universal features of HLMs will be
captured well by such a simple system [14] since it bears
similar symmetries as other mechanical systems used in
previous studies of HLMs [5,6,10,12]. The Lyapunov ex-
ponents and Lyapunov vectors are obtained via the so-
called standard method [20].
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In general, the tangent space dynamics of a Hamiltonian
(lattice) system with continuous symmetries is formally
similar to the lattice dynamics of harmonic crystals [7,17].
The force constant matrix for tangent space dynamics, i.e.,
the Hessian matrix, is, however, not constant and depends
on instantaneous states of the system. Owing to the chaotic
nature of the system dynamics, the force constant matrix
fluctuates spatially and temporally. There are, however,
limiting cases, where these fluctuations vanish and the
correspondence between Lyapunov modes and phonons
becomes exact. Two such limits for our system Eq. (1)
are as follows. In the first, the case » = 1 in Eq. (2), the
tangent space dynamics is just the discrete-time version of
the lattice dynamics of one-dimensional harmonic crystals
[21]; i.e., the Lyapunov modes are identical to phonons. In
contrast to this integrable limit, the second case with » = 0
is fully chaotic and the force constant matrix becomes the
negative of the discrete Laplacian. This implies that again
the Lyapunov modes take the form of phonon modes, but in
addition, the Lyapunov spectrum takes the form of the
phonon spectrum of harmonic chains including the appear-
ance of gaps. Detuning from these limiting cases, some
features of the phonon modes persist in the Lyapunov
modes, but also new and unexpected features appear due
to the fluctuations of the force constant matrix along the
chaotic trajectories.

We show in Fig. 1 the variation of Lyapunov spectra with
the mass ratio k = €,/€,. For the Hamiltonian system
considered, the Lyapunov spectrum has the symmetry
ACL=1=a) = — )(@) Ag can be seen in the plot, gaps appear
in the middle of each half of the spectrum as the mass
imparity is large. With increasing «, the spectral gap
shrinks and disappears eventually. These facts imply that
Lyapunov exponents play a similar role for Lyapunov
modes as do the frequencies for phonons and the mass
difference between neighboring sites does induce gaps in
the Lyapunov spectrum.

The Lyapunov spectrum of an extended system is proven
to be a continuous curve in the thermodynamic limit for
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FIG. 1 (color online). Lyapunov exponents as function of the
Lyapunov index « and the mass ratio k = €,/€;. Here L =
1024 and r = 0.2. Notice that the gaps in the Lyapunov spectra
disappear as « increases beyond a certain threshold value «..

many cases [22]. In the numerical simulation of a system of
size L, the increments between neighboring Lyapunov
exponents are not zero but of the order 1/L. Thus one
may suspect that the observed disappearance of the spec-
tral gap in Fig. 1 is only a numerical artifact; i.e., the
spectral gap just becomes too small to be detected in the
simulation using a finite L. In order to clarify this point, we
present in Fig. 2 the system size dependence of the spectral
gap 61 = AL/2=D — )(L/D QObviously, in the two regimes
on each side of the threshold value «,. [23], the spectral gap
size 0 A behaves differently. For k < k., 6 A is independent
of the system size L while §A vanishes for large L as L™!
for k > k.. As for the x dependence, A decreases with
increasing « in the regime « < k. while it is nearly con-
stant in the regime « > k.. Thus one expects that in the
thermodynamic limit the spectral gap size 6A decreases
gradually to zero as « approaches k. from the side k < k,
while it stays to be zero in the regime k > k.. Figure 2(a)
shows that data of A from simulations with increasing
system size L have the tendency to approach such a master
curve. This indicates that the spectral gap does disappear at
the threshold value «, and excludes the possibility of
numerical artefacts. One can state now that a large enough
mass difference between the two sorts of elements is
required for the appearance of gaps in the Lyapunov spec-
trum of diatomic systems.

Moreover, as shown in Fig. 2(a), the critical behavior of
the spectral gap size 6A in the supercritical regime can be
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FIG. 2 (color online). The Lyapunov spectral gap size §A =
AL/2=1) — A(L/2) v the mass ratio k with » = 0.2. Obviously, A
has different system size dependencies as « is below or beyond
the threshold value «,. = 0.45.
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fitted well by the function A ~ (k — k.)*> with a rough
estimation of the threshold value «, = 0.45.

Now we turn to the study of the influence of mass
imparity on Lyapunov modes. Inspired by the scenario of
changes in phonons we expect to observe also two types of
Lyapunov modes: acoustic and optical ones, respectively.
To check this we consider the tangent space dynamics of
neighboring sites for two Lyapunov modes belonging to

the two branches, respectively. Results for an example with
Kk = 0.125 < «, is shown in Fig. 3. Here 5u!® denotes the
coordinate component of the ath Lyapunov mode for the
first lattice site and Sul®
(a)
2

for the second site correspond-

ingly. The plot of duy™ versus 614(1“) in Fig. 3 shows that
the distribution of phase points is highly anisotropic and
they tend to align along some directions. In a phonon
context one would associate the two modes presented
with the edge of the first Brillouin zone in a diatomic
harmonic chain, i.e., with the wave number 7. The con-
stant a denotes the equilibrium distance between neighbor-
ing particles. A similar plot as Fig. 3 for the corresponding
quantities of phonons with identical wave number 5% in
monatomic systems usually gives rise to circles. Mass
difference in diatomic systems induces differences in os-
cillating amplitudes of the two sorts of particles. The
dynamics of these zone-boundary phonons becomes quite
simple; i.e., one or the other of the two sublattices is at rest
[1]. We expect that the anisotropy observed in Fig. 3 has a
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FIG. 3 (color online). Coordinate component of the offset
vector for the first lattice site Su(la) vs that for the second site
Su(z”) for Lyapunov modes with (a) a=1L/2—-1 and
(b) @ = L/2, which belong to the acoustic and optical branch,
respectively. Here L = 128, k = 0.125, and r = 0.3. Note that
the distributions of phase points are highly anisotropic for both
LMs. (c) The probability distributions of the quantity 6(r) = L X
arctan(8u'™ /8u™). Two additional cases with x = 0.25 and
0.5 are also shown. Note that the peak in P[6(¢)] fades away
gradually with increasing .

similar origin as the corresponding zone-boundary phonon
dynamics. To further quantify such anisotropy of tangent

space dynamics, we evaluated the quantity 6(z) E% X

arctan(Su(za) / Su(la)). The probability distributions of 6(r)
for the two Lyapunov modes are presented in Fig. 3(c).
Each distribution has a sharp dominant peak, which con-
firms the significance of the anisotropy in phase point
distributions. As expected, the position 6, of the dominant
peak is very close to 0 and *7/2 for the acoustic and
optical Lyapunov modes, respectively [24]. A crucial ob-
servation is that, with increasing « the peak in the proba-
bility distribution of 6(f) becomes gradually lower and
broader, and it fades away eventually as « approaches
K.; 1.e., the angular distribution of phase points becomes
homogeneous then [see Fig. 3(c)]. Details will be given in a
future publication. Simulations for other Lyapunov vectors
show that the evolution of 6, with the Lyapunov index «,
or the dominant wave number k of Lyapunov vectors,
exhibits qualitatively the same behavior as phonons in
diatomic systems.

By varying the parameter r in the skewed tent map
Eq. (2), the curve of the threshold value x.(r) divides the
(r, k) parameter plane into two regimes, with and without
gap in the Lyapunov spectrum, respectively. As shown in
Fig. 4, the threshold value k. decreases with increasing r;
i.e., the appearance of a spectral gap becomes more and
more difficult to observe. We noticed in numerical simu-
lations that for the cases with k = 1, as r is small there are
step structures in the near-zero regime of the Lyapunov
spectra [see Fig. 4(b)]. Moreover, this regime shrinks in
size with increasing r. Recently, we proposed to use the
concept of domination of the Oseledec splitting to explain
the appearance of these step structures in the Lyapunov
spectrum and the significance of HLMs [25]. The basic
idea is that for systems with small fluctuations, in the finite-
time Lyapunov exponents a good separation between dif-
ferent unstable directions gives rise to these step structures
and significant HLMs. With increasing r the increasing
fluctuations in finite-time Lyapunov exponents induces the
entanglement of the time evolution of unstable directions.
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FIG. 4 (color online). (a) Phase diagram for the diatomic
system Eq. (1). Appearance of spectral gaps is judged in a
system with L = 128 by using the criterion 64 > A(L/272) —
AL/2=1) 4 (L7241 — ) (L/2+2) Notice that the appearance of a
gap in the Lyapunov spectrum becomes more difficult to observe
with increasing r. (b) Lyapunov spectra for several cases with
k=1, r=20.05, 0.1, 0.15, and 0.2, respectively. See that the
regime of the Lyapunov spectrum with step structures shrinks
with increasing r.
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In consequence, the regime of the Lyapunov spectrum with
step structures shrinks. We believe that the same mecha-
nism works here for the appearance of the spectral gap in
diatomic systems. The entanglement of the evolution of
unstable directions caused by the fluctuations of finite-time
Lyapunov exponents works against the splitting effect
caused by the mass difference. The existence of a non-
trivial threshold value is the direct result of the competition
between these two effects.

In summary, a simple system of coupled map lattices
was used to study the influence of mass differences on
Lyapunov exponents and the dynamics of Lyapunov vec-
tors of extended systems with continuous symmetries. Our
main finding is that the mass difference induces the appear-
ance of gaps in the Lyapunov spectrum and the splitting of
Lyapunov modes into acoustic and optical branches. Such
a similarity in response to mass differences has its root in
the similarity of the mathematical form of tangent space
dynamics of our system and that of lattice dynamics of
harmonic crystals. It suggests and partially confirms the
existence of a certain correspondence between Lyapunov
modes and phonons even in the strongly anharmonic re-
gime. This finding on one hand is important for under-
standing the physical relevance of Lyapunov modes in
relation to normal modes such as phonons. On the other
hand, it suggests a potential relevance of Lyapunov modes
for understanding strong anharmonic dynamics such as
conformational transformations of proteins. Moreover,
serving as a first step toward the study of disordered
systems the implication of our finding for the glass tran-
sition in Lennard-Jones fluids will be worked out. Another
important task is to discover further similarities between
Lyapunov modes and INMs and to see whether one can
connect macroscopic transport coefficients such as the
diffusion coefficient with Lyapunov modes, especially
HLMs, similar to what has been done for INMs [4].
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