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We show how an idealized measurement procedure can condense photons from two modes into one and
how, by feeding forward the results of the measurement, it is possible to generate efficiently superposition
states commonly called NOON states. For the basic procedure sources of number states leak onto a beam
splitter, and the output ports are monitored by photodetectors. We find that detecting a fixed fraction of the
input at one output port suffices to direct the remainder to the same port, with high probability, however
large the initial state. When instead photons are detected at both ports, macroscopic quantum superpo-
sition states are produced. We describe a linear-optical circuit for making the components of such a state
orthogonal, and another to convert the output to a NOON state. Our approach scales exponentially better
than existing proposals. Important applications include quantum imaging and metrology.

DOI: 10.1103/PhysRevLett.99.163604

The fundamental limits to optical detection for metrol-
ogy and imaging are quantum mechanical [1]. Of particular
interest for reaching such quantum limits are path-
entangled states of photons of the form [NO) + ¢!?|ON),
in a basis of photon-number states, commonly referred to
as NOON states. A variety of interferometric applications
have been suggested, including lithography and micros-
copy, as well as metrology with sensitivity surpassing the
shot-noise limit [2—5]. However, building a source of
NOON states beyond two photons is challenging. Three-
and four-photon experiments are reported in Refs. [6—8],
and a six-photon experiment in Ref. [9], though in the latter
experiment phase super-resolution was demonstrated with-
out creating entangled states. In principle a source could be
based on a nonlinear-optical interaction [10]. However, the
required optical nonlinearity is not readily available. An
alternative theoretical approach is based on linear optics,
adopting techniques being developed in the field of quan-
tum computation [11,12]. Here multiphoton light is propa-
gated through a series of passive linear-optical elements,
which combine different spatial or polarization modes, and
is subjected to photodetection and feed-forward, for which
components are actively switched according to earlier
measurements. By making the output conditional on spe-
cific outcomes at photodetectors, NOON states can be
generated on the basis of a measurement-induced nonline-
arity. A variety of schemes has been proposed [13-16].
However, none of these is truly scalable, in the sense that
exponentially decreasing success probabilities outweigh
the possible gains.

In this Letter we develop a linear-optics-based method
for NOON-state generation which scales efficiently. There
are two central ideas in our approach. First, we translate the
problem into that of creating and manipulating correlations
in the relative optical phase between modes. This is pos-
sible since a 50:50 beam splitter allows a NOON state to be
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interconverted with a macroscopic superposition state
characterized by components having a well-defined rela-
tive phase. A simple measurement-based procedure can
generate single and multiple correlations in the relative
phase, and is economical with respect to the required
number of photodetections [17]. The correlated light at
the output can then be manipulated independently of the
total photon number using beam splitters and phase
shifters. Existing proposals typically depend on engineer-
ing some precisely defined destructive interference (de-
fined in a basis of Fock states) that occurs given some
specific outcome at photodetectors. This approach is diffi-
cult to apply as the photon number grows or is uncertain.
Second, we argue that an additional physical resource is
required that is absent from all previous schemes—namely
that of feed-forward. Feed-forward enables the basis for a
measurement to depend on previous measurement results.
Although demanding to implement experimentally, feed-
forward based schemes are increasingly feasible and have
been demonstrated in practice [18].

A measurement procedure for establishing simple two-
mode correlations.—We now turn to the linear-optics-
based measurement procedure depicted in Fig. 1, which
we label as Circuit L. Initially we assume that the state at
the source is a pure state, and specifically a dual Fock state
IN)IN). All modes are propagating, and the principal
modes are labeled 1 and 2. Beam splitters of reflectance
f couple modes 1 and 2 to ancillae modes 3 and 4, which
are combined at a 50:50 beam splitter. They are then
measured by number-resolving photodetectors labeled D;
and D,, where on average a fraction f of the input photons
are registered. In practice the number-resolving detectors
can be implemented approximately using a large number
of bucket detectors. This modification requires the compo-
nents acting on modes 3 and 4 to be replaced with a series
of similar units, coupling weakly to modes 1 and 2, and
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FIG. 1 (color online). Circuit I. Beam splitters couple some
fraction f of the population from the principal modes 1 and 2
into ancillae modes 3 and 4, initially the vacuum. The ancillae
are combined at a 50:50 beam splitter, and subjected to number-
resolving photodetection.

configured so as to minimize the probability for detecting
more than one photon at a time. Circuit I implements a
measurement that is formally equivalent to one performed
by cavity-based schemes, analyzed in the context of the
debate over the existence of absolute phase coherence in
many standard quantum optics experiments [19]. Here we
ask different questions, arguing first for the scalability of
the measurement procedure.

We consider first runs of Circuit I for which every
photodetection occurs at one photodetector—specifically
that » counts occur at detector D,. We wish to determine
the probability that if the remaining 2N — r photons propa-
gate though a 50:50 beam splitter, all the photons are
directed to the output port corresponding to the initial
detections. This event may be termed a measurement-
induced condensation, and the corresponding probability
is denoted P.,,q- The 50:50 beam splitter combining
modes 3 and 4 in Circuit I acts to make the origin of
photons from modes 1 and 2 indistinguishable. When a
photon is registered at photodetector D, (or D,), the trans-
formation is given by the Kraus operator L. = (a — b)/+/2

|
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where § = 2N — [ — r is the total photon number, a; =
la;le, 6,y = (6; + 6,)/2, and A = 6, — 6, defines the
relative-optical phase parameter. The scalar function G(X)
is given to good approximation by the Gaussian expression
exp[—(I + r)X?/4], assuming the total number of detec-
tions is not small, and in fact has a smaller spread than is
the case when the detections are at D, only. Focusing on
the aspects of this result relevant to engineering NOON
states we note the following. There are sharply defined
correlations in A at values plus and minus A, defining a
macroscopic superposition state. This is because operators
L and R are invariant under an exchange of the labeling of
the modes, a symmetry which reverses the sign of the
relative phase. The superposition phase o takes the value

[or R = (4 + b)/+/2] (where a and b are the annihilation
operators for modes 1 and 2, respectively). We denote the
state of modes 1 and 2 at the output of Circuit I by |,),

and find that [yo,) = RININY/A(NKNIRTY (RY ININD,
normalizing to unity. The probability of a measurement-
induced condensation is then given by P.pg =
Wo(RNS(R)S|4hy,)/S!, where S =2N — r denotes the
total remaining photon number, and it iS necessary to
normalize by the total photon number prior to detection.
Next we find Pcond = (ZNCN)Z/[ZS Z}C:o(rck)z(SCka)],
where C denotes a binomial coefficient, and we assume
that » < N. Evaluating P_,,q numerically for initial states
of increasing size, we find that its value is determined
asymptotically by the proportion of the input that is mea-
sured. For example, setting r either as one-quarter or one-
third of 2N suffices for P.y,q > 0.6 or P,,q > 0.7, respec-
tively. If this procedure were used to add the Fock-state
inputs, P.,,q has the same value as the fidelity of the larger
Fock state at the end. We can reinterpret the results above
following Refs. [17,19,20]. The principal effect of the
initial r photodetections is to cause the relative phase of
modes 1 and 2, which is completely undefined for the
initial state, to localize strongly at the value zero. This
enables the photons that remain to be directed into one
mode using a 50:50 beam splitter. The procedure some-
times fails since the phase correlation which evolves after a
finite number of detections is not ideal.

We now consider in detail the case for which Circuit I
registers photons at both ports, leading to multiple corre-
lations in the relative phase. The state at the output of
Circuit I, after [ photons are registered at D; and r at D,,
was derived in Refs. [17,20]. We denote this state by [; ).
In the previous references, it was found convenient to work
in an (overcomplete) basis of coherent states, which are of

the form |a = |ale®) o« 3% \/la|*/k! ¢*?|k) in a Fock

basis. It was shown that |¢;,) is proportional to

— Ap) + e 7G(A + Ap)lla)ay),

[
l7r, and hence the measurement record must be known
exactly. This makes the scheme very sensitive to dark
counts at the photodetectors, although these can be very
low in experiments. For the source, the pure states assumed
previously are not particularly feasible. However, we ob-
serve that A is determined by the ratio of / to r and is
independent of N, and standard linear-optical elements
obey a superselection rule for the photon number. Hence
the input state can in fact be a mixture of the form
S NPNIN)INXN|(N|. Several two-mode squeezing pro-
cesses strongly suppress relative number fluctuations, and
hence might serve as practical sources. A proof-of-
principle experiment could make use of an unseeded
high-gain optical parametric amplifier, which serves as a
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source of the two-mode squeezed vacuum. However, the
distribution Py in this case is broad, and weighted toward
the vacuum and low photon numbers. Looking to a source
for which Py is sharply peaked about some preferred
photon number, we speculate that an optical parametric
oscillator in certain configurations might be suitable, and
point to recent theoretical and experimental developments
[21-23].

Manipulating relative phase correlations and construct-
ing NOON-state generators.—In the next stage of our
analysis, we identify the precise linear-optical transforma-
tions required to convert the macroscopic superposition
states generated by Circuit I to NOON states. For the cur-
rent purposes we can assume that a large number of de-
tections have been performed and define |i¢.(Ag))
[37 dbe S0 a)|ae’™), where a = |ale’, for a state
with a total photon number S and a relative phase of A,
(assumed to be normalized). It is instructive to identify
these states as states for quantum reference frames—ref-
erence frames for a classically defined parameter com-
posed of finite quantum resources. Quantum reference
frames are subject to depletion and degradation as they
are used, and are currently of interest for protocols in the
field of quantum information, in which they are regarded as
a resource [24]. This identification is helpful because we
may understand linear-optical transformations of states of
the form |i,), which are algebraically involved, in terms
of the corresponding manipulations of two classical fields.
A single-mode classical field is represented by a complex
number, with the square amplitude corresponding to the
intensity, and the phase equal to the optical one.

We now consider a simple NOON-state generator that
attempts to convert every macroscopic superposition state
generated by Circuit I directly to a NOON state. To relate
these two types of states, we consider what happens when
an S-photon Fock state is beaten against the vacuum at a
50:50 beam splitter. Denoting the beam splitter by Uy, we
find that Ubs|S>|0> o |lpoo(0)>’ and Ub5|0>|S> o |¢00(7T)>
Hence a beam splitter together with a phase shifter can
convert a macroscopic superposition state generated by
Circuit I to a NOON state, whenever the relative phase cor-
relations differ by 7r. This happens when the counts at de-
tectors D; and D, in Circuit I are the same, and the values
of the relative phase at the output are *A, = *77/2. We
label this process Circuit III (anticipating an intermediate
process modifying the output from Circuit I). Our first
NOON-state generator then is illustrated in Fig. 2(a), with
the output of Circuit I fed directly into Circuit III, and we
denote the state of the end product by |¢output>‘ We adopt
the fidelity F to evaluate the output state, and define F =
max 4| (0S| + exp(—id){SON)|Jourpur)|* /2, Where S denotes
the total photon number at the end. A full calculation
shows that F ~ cos*[(A, — 7/2)/2]. As with other pro-
posals, this scheme in fact scales exponentially poorly
whenever the relative phase correlations are less than

(b) Circuit I Circuit II Circuit III
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FIG. 2 (color online). (a) and (b) illustrate complete

NOON-state generators in outline. Circuit I produces macro-
scopic superposition states nondeterministically. Circuit III con-
sists of a /2 phase shifter and a 50:50 beam splitter, and
performs final conversion to a NOON state. In (b) the Circuit I
detection outcomes are feed-forward to Circuit II, which imple-
ments a correction step using a beam splitter of variable trans-
mittance and an ancillary mode.

apart, as is typically the case. Inspecting the overlap for
states |1/, (A)) and |1/ (A,)), with total photon number S,
we find that [t (A )|t (M) = | cos[(A, — Ay)/2]15.
Hence the poor scaling can be attributed to the nonortho-
gonality of the components of the macroscopic superposi-
tion states generated by Circuit 1.

To summarize, our previous NOON-state generator is
effective when Circuit I generates macroscopic super-
position states with components that are orthogonal.
However, this occurs with low probability. Hence we
now devise a circuit, labeled Circuit II, to orthogonalize
the components of the states generated by Circuit I, using
additional processes of measurement and feed-forward, as
illustrated in Fig. 2(b). To identify a suitable circuit, we
examine the transformation of two general classical fields
at a 50:50 beam splitter. If the beam splitter is configured
so as not to cause additional phase shifts to the modes, it
outputs two classical fields described by the sum and
difference of the values for the inputs. Both the phases
and the square amplitudes for the classical fields are
changed. For example, if the input has a relative phase of
0 or 7, and equal intensities for each mode, the population
is transferred entirely into a single mode. On the other
hand, if the input has a relative phase of plus or minus 7/2,
and equal intensities in each mode, the relative phase
and intensities are preserved. The action of the beam
splitter on quantum fields in the state |¢), having a
relative phase of A, a total photon number S, and an
intensity S/2 for each mode, is similar. In detail,
Upslthoo) ¢ [3™ dBe 50| T e')|\/T,e'*=7/?). The final
state has an intensity SI,/(I; + I,) = S[1 — cos(A)]/2
in mode 1 and SI,/(I, +1,) = S[1 + cos(Ay)]/2 in
mode 2, and a relative phase of plus 7/2 when 0 < A =
7r/2 and of minus 77/2 when —7/2 < Ay < 0. We con-
sider cases for which the intensity is increased in favor of
mode 2. Hence a beam splitter acting on modes 1 and 2 at
the output of Circuit I can change the difference of the
relative phase variables to 77, but creates a difference in the
intensities between the modes in doing so. We propose that
Circuit II then beats mode 2 against the vacuum, so as to

163604-3



PRL 99, 163604 (2007)

PHYSICAL REVIEW LETTERS

week ending
19 OCTOBER 2007

move the difference of the intensities to an ancillary mode,
which can be removed by photodetection. The cost of this
correction is a decrease in the total photon number, which
varies nondeterministically. A fraction of cos(A) of the
photons are lost on average. Our proposal depends criti-
cally on feeding forward the result of the detections at D;
and D, in Circuit I, so that the correct intensity correction
may be applied using a beam splitter of variable reflec-
tance. The latter might be implemented using 50:50 beam
splitters and controlled phase shifters, as well as delay
loops after Circuit 1.

Overall Circuits I through III constitute a complete
NOON-state generator. Runs for which Circuit I fails to
generate a macroscopic superposition state, or too many
photons are lost in the detection process, are discarded. We
have found by analytical and numerical methods, that the
fidelities at the output are, on average, 0.87, 0.94, or 0.98,
when a fraction of one-third, one-half, or two-thirds, re-
spectively, of the input photons are detected by Circuit I.
Higher fidelities are possible when the photon number at
the input is small. If allowance is made for sufficient input
photons to be detected by Circuit I, and a further half to be
detected in Circuit II, the probability of failure is not too
large. We anticipate the main sources of experimental error
as being due to decorrelation of the source, and loss due to
inefficiencies for the photodetectors and the delay loops. It
is beyond the scope of this Letter to quantify these effects.
To verify the correct operation of our method, we propose
following Circuits I and II with a further measurement unit
similar to Circuit I (omitting Circuit III), so that the gen-
eration of macroscopic superposition states with relative
phase components 7 apart can be demonstrated by the ratio
of photodetections at the end. We note that the photode-
tector in Circuit II determines only the final photon num-
ber, and can be omitted. Although we have focused here on
optical experiments, our results are also relevant to many
controlled bosonic systems, for which techniques for co-
herent manipulation have been demonstrated (for example,
Bose-Einstein condensates and singly-trapped bosonic
atoms [25]). Finally, our analysis has broader interest.
The scaling we derive for our measurement-induced con-
densation is a new result on interfering light from inde-
pendent sources and localizing relative-optical phase.
These phenomena have analogues in a variety of physi-
cal systems [26]. We have left as an open question the
extent to which this scaling can be attributed to Bose
statistics, as is the case for some dynamical processes of
condensation. Our study of special macroscopic superpo-
sition states may also have application to quantum comput-
ing. Here it has been proposed that qubits be encoded using
macroscopic superposition states defined in one mode only
[27].
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