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Quantum Control of the Hyperfine Spin of a Cs Atom Ensemble
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We demonstrate quantum control of a large spin angular momentum associated with the F =3
hyperfine ground state of '33Cs. Time-dependent magnetic fields and a static tensor light shift are used
to implement near-optimal controls and map a fiducial state to a broad range of target states, with yields in
the range 0.8—0.9. Squeezed states are produced also by an adiabatic scheme that is more robust against
errors. Universal control facilitates the encoding and manipulation of qubits and qudits in atomic ground
states and may lead to the improvement of some precision measurements.
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Accurate dynamical control plays a central role when
quantum mechanics is leveraged to improve the outcome
of a physical process. Quantum control has been accom-
plished in many contexts and at various levels of sophisti-
cation in areas such as nuclear magnetic resonance [1],
coherent chemistry [2], quantum information processing
[3], and quantum metrology [4]. One extensively studied
problem is how to transfer a physical system from an initial
to some final state, as is done, for example, in optical
control of chemical reactions [2]. In such cases, the figure
of merit for control is the yield, or fidelity [3], between the
actual and the desired state. As long as errors and decoher-
ence are negligible, the general topography of control
landscapes (yield vs control parameters) is well understood
[5], and techniques are available for efficient design of
optimal controls [6]. The most ambitious level of quantum
control requires that the system be controllable in the Lie-
algebraic sense [7], a sufficient condition for which is that
internal dynamics plus interaction with external fields can
generate any unitary transformation within state space.
Even when full control is possible in principle, attention
must be paid to robustness in the presence of dissipation
and errors in the control fields. In spin-1/2 systems, this
can be accomplished by open loop control [8], i.e., without
recourse to real-time feedback [9] or error correction [3],
but little is known about robust controls in larger state
spaces.

In this Letter, we demonstrate quantum control of the
spin angular momentum (nuclear plus electronic) associ-
ated with the F = 3 hyperfine ground state of individual
133Cs atoms, corresponding to a (2F + 1 = 7)-dimensional
state space. Starting from an easily prepared fiducial state,
we use magnetic fields and ac Stark shifts (light shifts) to
perform near-optimal control and produce a range of target
states. We evaluate our control performance by recon-
structing the spin density matrix [10] and computing the
fidelity between the measured and the target states. In most
cases, the estimated yield is in the 0.8—0.9 range, limited
by errors in the control fields and to a lesser extent by
decoherence from light scattering. The measured states can
also be compared to a full model prediction including
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errors and decoherence. Typical fidelities between mea-
sured and predicted states are around 0.9, close to the
resolution limit of our state estimation procedure. We
also use optimal control to produce spin-squeezed states
and compare against a method based on adiabatic evolution
[11] that is more robust against control errors. Large spins
provide a testing ground for the design of accurate and
robust controls in a system where the Hamiltonian is well
known and errors and dissipation can be accurately mod-
eled. From a practical perspective, quantum control of
hyperfine states is relevant for neutral atom quantum com-
puting [12], wherein qubits or qudits [13] are encoded in
the ground-state manifold, and may provide a route to
modest spin squeezing and gains in precision atomic mag-
netometry [14].

Universal control of a spin F requires that the Hamilton-
ian dynamics be capable of generating an arbitrary unitary
transformation in SU(2F + 1). A linear Zeeman interac-
tion between the atomic magnetic moment and a weak
magnetic field generates only Larmor precession and geo-
metric rotations that represent SU(2). More general control
requires a Hamiltonian that is nonlinear in at least one
component of F. In our experiment, this is provided by an
off-resonance light field that couples to the atomic ground
state through the tensor ac polarizability and leads to a
spin-dependent light shift with an irreducible rank-2 com-
ponent [15]. The combination of a time-dependent mag-
netic field and a static x-polarized light field results in a
control Hamiltonian [16]

He(r) = gppupB(1) - F + khy, F3, ey

where we have expressed the strength of the nonlinearity in
terms of the photon scattering rate 7y, and where the
dimensionless parameter « is a measure of the time scales
for coherent versus incoherent evolution. Its value depends
on the atomic structure and the frequency of the driving
field and for Cs takes on a maximum value x = 8.2 when
tuned between the D; hyperfine transitions at 894 nm. This
is enough to allow considerable coherent manipulation. It
follows from the theory of Lie groups that a Hamiltonian of
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this form allows full control of a spin of any magnitude
[17]. Specifically, one can show that the algebra generated
by commutators and linear combinations of F,, F\, F?
spans the entire [(2F + 1)> — 1]-dimensional operator
space needed to represent SU(2F + 1). Thus, a time-
varying magnetic field in the x-y plane suffices to make
H(¢) universal.

A schematic of our setup for quantum control is shown
in Fig. 1(a). We begin with a sample of a few million Cs
atoms, laser cooled to ~2 uK and initialized by optical
pumping into a state of maximum projection along the y
axis, [¢o) = |m, = 3). Our control magnetic field is ap-
plied by a set of low-inductance coils driven by arbitrary
waveform generators, with an accuracy of better than 1%
and a modulation bandwidth of more than 100 kHz. Using
an all-glass vacuum cell, avoiding nearby conductive or
magnetizable materials, and synchronizing our ~0.5 ms
duration experiment to a fixed point during the ac line
cycle allows us to null the background magnetic field to
~100 uG without shielding or active compensation.
Immediately following a period of quantum control, we
estimate the resulting quantum state as described in
Ref. [10]. In this procedure, the control magnetic and
optical fields are applied to drive the spins for an additional
1.5 ms, while continually and weakly measuring a spin
observable through its coupling to the probe polarization.
To reduce the effect of noise, the measurement signal is
averaged over 16 repetitions of the experiment and the
density matrix determined from the measurement record
and the known evolution.

Control Hamiltonians for our experiment are designed
through a simple procedure that we have found to produce
very good though not provably optimal results. The objec-
tive is to start from the state | and to produce a specified
target state | y7) by modulating the field B(z) for a fixed
time 7. With readily available magnetic fields, the time
scale for geometric rotations is much shorter than for
nonlinear evolution driven by the light shift, and the latter

therefore becomes the time-limiting element of most trans-
formations. In our experiment, the maximum magnetic
field strength is 42 mG, corresponding to a Larmor fre-
quency of 15 kHz, and the nonlinear strength is kyg =
27 X 500 Hz. Under these conditions, there is no signifi-
cant sacrifice in control performance when the set of
available rotations is somewhat restricted. We therefore
choose the magnetic field to have constant magnitude
and a time-dependent direction in the x-y plane. With
this simplification, the control Hamiltonian is completely
determined by the angle ¢(7) between B(#) and the x axis.
The transformation |¢y) — |yr) acts in a (d=
7)-dimensional state space and can be specified by a set
of 2d —2 = 12 real numbers. Full control requires at
least that many free parameters in the control
Hamiltonian. To ensure sufficient flexibility, we specify
the control waveform ¢(z) by its values {¢;} at N = 30
discrete time steps.

The design of a control waveform proceeds through two
search iterations. At first, we calculate the state |ip) pro-
duced by a sequence of field directions {¢;} by integrating
the Schrodinger equation, with suitable filtering of the
corresponding B(z) to reflect bandwidth and slew rate
limitations of our magnetic coils and drivers. A locally
optimal control waveform is found by starting from a
random seed {¢;} and maximizing the yield Y =
[{xrlp)|* with a gradient ascent algorithm. We have
found that just a few seeds are needed to generate at least
one waveform with yield = 0.99, which is expected from
the general structure of control landscapes derived in
Ref. [5]. At this point, we switch to a more realistic
estimate of control performance, modeling the evolution
with a full master equation that incorporates decoher-
ence from light scattering and variation of the nonlinear
strength across the ensemble. This allows a second stage of
optimization, starting with the waveform from round one
and using the complete but computationally intensive
model to predict the yield, now defined in terms of the
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FIG. 1 (color online).
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Quantum control of a large atomic spin. (a) Schematic of the experiment. (b) Example of a control waveform

¢ (1). (1)—~(4) Wigner functions calculated at four stages during the control sequence. Both sides of the sphere are shown, using two
different viewpoints and a rotating frame to transform away overall rotation due to B(z). The final result is close to the target state
lx7) = (Im, = 2) + |m, = —2))/+/2. (c) Density matrix (absolute values) and Wigner function for | y7).
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fidelity Y = Try/ plT/ zppplr/ % between the target (pr) and

the predicted (pp) density matrices.

An example of an optimized control waveform is shown
in Fig. 1(b), along with Wigner function representations of
the spin wave packet [18] at intervals during the trans-
formation as calculated by Schrodinger integration. Note
that the nonlinear evolution initially produces a squeezing
ellipsoid, which later wraps around the sphere so that
interference effects can be manipulated to create the de-
sired state. The end product is very close to the target state
shown in Fig. 1(c). According to our model, this and all of
our other control waveforms produce yields near 0.95.
Taking into account imperfect optical pumping in our
experiment (the initial population in [) is ~0.96) reduces
the expected yields to around 0.90.

We have tested a sample of control waveforms designed
to produce 21 different pure spin states. Figure 2 shows
three examples of target and measured density matrices,
with yields in the range 0.87-0.97. A more complete
statistics of yields for over a hundred experimental realiza-
tions of control is compiled as a histogram in Fig. 3(a),
showing a fairly broad distribution centered on a respect-
able value of 0.8. It is informative to compare the measured
density matrices p,, also against the density matrices pp
predicted by our model, quantified by the fidelity of control

Fec= Trwlp}g/szp;,/z. Figure 3(b) shows a histogram of
fidelities for our data set. Note that both yield and fidelity

can be affected by control errors (the actual state is differ-
ent from pp) as well as state estimation errors (the actual
state is different from p,,) and that we cannot distinguish
between these possibilities. Numerical modeling shows
that small background magnetic fields or miscalibration
of the control fields will lead to apparent geometric rota-
tions of the final state, but such errors are too small to be
significant in our experiment. The obvious outliers in the
yield and fidelity distributions are associated with two
specific final states and their respective control waveforms,
and closer examination shows that the measured states are

FIG. 2 (color online). Examples of target and measured den-
sity matrices (absolute values). The target states are
@ (m,=2)+Im,=-2)/¥2, () Im,=2), and

(c) X,ymy|m). The experimental yield is indicated for each case.

rotated with respect to the predicted states. The axis of
rotation corresponds to the magnetic field direction at the
transition between the control and state estimation parts of
the experimental sequence, which suggests a problem with
the way the corresponding control waveforms were joined
together. As part of our data analysis, we can indepen-
dently rotate each individual p,, to maximize its fidelity
relative to pp and obtain new values for yield and fidelity.
Carrying out this procedure for all data points takes care of
the outliers without otherwise changing the yield distribu-
tion significantly, as shown in Fig. 3(c). This distribution
can reasonably be interpreted as a measure of our ability to
control the spins in a well-designed experiment. The fidel-
ity distribution [Fig. 3(d)] remains peaked at ~0.9, which
we know from experience to reflect the accuracy of our
state estimation protocol. Note that random errors in state
estimation are more likely to decrease than increase an
apparent yield and that a better estimate of the real range of
yields can be obtained if the error statistics are taken into
account. As a reasonable first step, we use a simple error
model, wherein the measured states undergo normally
distributed random displacements in state space relative
to the actual states, which in a similar way are displaced
relative to the target states. This model suggests that the
real yields (actual vs target state fidelity) are roughly 10%
higher on average than those in Fig. 3(c). This puts most
real yields in the range 0.8—0.9, in good agreement with the
~0.9 predicted by the model used to design the control
waveforms.

To further explore quantum control in our system, we
have studied the generation of spin squeezing by optimal
control as outlined above and by the adiabatic scheme
described in Ref. [11]. Both start from an initial spin-
coherent state |¢)y) = |m, = —3), which has equal uncer-
tainties for the components AF, and AF,. This state is a
good approximation to the ground state of the control
Hamiltonian when the magnetic field B(¢z) = B(¢)y and
B(r) is large. As the field magnitude is slowly reduced
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FIG. 3 (color online). Histograms of (a) yields and

(b) fidelities of measured vs predicted states. (c),(d) Yields and
fidelities when each measured state is geometrically rotated to
optimize fidelity relative to the predicted state.
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FIG. 4 (color online). Spin squeezing by adiabatic control.
(a) Normalized squeezing parameter vs final magnetic field for
the squeezed and antisqueezed components. Dashed lines: Per-
fect squeezing. Open triangles: Full model predictions for adia-
batic control. Solid circles and diamonds: Experimental results
for adiabatic control. Open circles and diamonds: Experimental
results for optimal control. (b) Target and (c) measured Wigner
functions corresponding to the smallest observed &.

over ~1 ms, the state adiabatically evolves to minimize
the squeezing parameter ¢ = AF,/|(F,)| of relevance for
metrology [19]. Figure 4(a) shows the squeezing and anti-
squeezing that results as B(r) is ramped to different final
values, relative to a spin-coherent state with the same
[{F,)|. Up to ~4 dB of squeezing is seen in the experiment,
in good agreement with model predictions. For the small
spin used here, the squeezing is quickly limited by the
decrease in |(F y)l as the squeezing ellipse wraps around the
sphere. Figures 4(b) and 4(c) show Wigner functions for
the target and the actual state for the smallest & achieved in
our experiment (~80% of the coherent state value). We
have produced the same spin-squeezed states via optimal
control, with small but significant reductions in both
squeezing and yield. This is most likely because adiabatic
control is inherently robust against control errors and thus
advantageous even in the presence of extra decoherence
during the longer control waveforms.

In conclusion, we have implemented a scheme for opti-
mal control of the spin of a Cs atom in the F = 3 ground
state. Control Hamiltonians were designed to produce a
range of target states, applied in the laboratory, and eval-
uated by measuring the resulting density matrices. Typical
yields fall in the range 0.8—0.9. Among the targets were a
number of spin-squeezed states, which allowed compari-
son of optimal control to an adiabatic squeezing scheme
robust to control errors. In future experiments, we plan to
use a combination of rf and microwave fields to control the
entire 16-dimensional state space for the Cs 6S;/,(F =
3,4) ground manifold. Preliminary studies indicate that
this system is fully controllable on a time scale of a few
tens of microseconds with easily available control fields.
This will provide an important tool for the encoding and
manipulation of qubits and qudits embedded in a larger

atomic ground manifold. An example is magnetic field
insensitive encodings |F, m), |F + 1, —m), where the qubit
states are not easily coupled by one-photon microwave or
two-photon optical Raman transitions if m # 0 [20]. It is
also interesting to consider if control Hamiltonians of the
form used here can be achieved for collective spins, for
example, through coherent optical feedback [21] or
through atom-atom interactions in a quantum-degenerate
gas [22].
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