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We introduce spin projection methods in the shell model Monte Carlo approach and apply them to
calculate the spin distribution of level densities for iron-region nuclei using the complete (pf� g9=2)
shell. We compare the calculated distributions with the spin-cutoff model and extract an energy-dependent
moment of inertia. For even-even nuclei and at low excitation energies, we observe a significant
suppression of the moment of inertia and odd-even staggering in the spin dependence of level densities.
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The spin distribution of level densities is important for
the calculation of statistical nuclear reaction rates such as
those in thermal stellar reactions [1]. Knowledge of the
spin distribution is also required for the determination of
total level densities from measured neutron or proton
resonances [2,3], since the latter are subjected to spin
selection rules.

The microscopic calculation of the spin distribution of
level densities in the presence of correlations is a difficult
problem. It is often assumed that the spin distribution
follows the spin-cutoff model, obtained in the random
coupling model of uncorrelated spins of the individual
nucleons or excitons [4]. The spin-cutoff distribution is
determined by a single parameter, an effective moment of
inertia. The latter is often set to its rigid-body value and
occasionally determined empirically.

The interacting shell model takes into account both shell
effects and correlations and thus provides a suitable frame-
work for the calculation of level densities. However, in
mid-mass and heavy nuclei, the required model space is
many orders of magnitude larger than spaces in which
conventional diagonalization methods can be applied.
This problem was overcome by using the shell model
Monte Carlo (SMMC) approach [5,6] to calculate level
densities [7,8]. SMMC level densities in the iron region
were found to be in good agreement with experimental data
without any adjustable parameters [7,8].

In the SMMC approach, thermal averages are taken over
all possible states of a given nucleus, and thus the com-
puted level densities are those summed over all possible
spin values. Here we introduce spin projection methods
within the SMMC approach that enable us to calculate
thermal observables at constant spin. We first discuss
projection on a given spin component Jz, and then use it
to calculate spin-projected expectation values of scalar
observables.

We apply the method to the spin distribution of level
densities in the iron region, and compare the results with
the spin-cutoff model. We also extract from the spin dis-
tributions an energy-dependent moment of inertia.

Signatures of the pairing phase transition are observed in
the energy dependence of the moment of inertia.

We first introduce a projection on the spin compo-
nent Jz � M along a fixed z axis. The projected partition
function for a fixed value of M and at inverse tempera-
ture � is defined by ZM��� � TrMe��H, where H is the
Hamiltonian of the system and

 TrMX̂ �
X

�;J�jMj

h�JMjX̂j�JMi (1)

for an operator X̂. Here we assumed H to be rotationally
invariant, so its eigenstates j�JMi are characterized by
good total angular momentum J and its magnetic quantum
number M with M-independent energies E�J. The label �
distinguishes between states with the same spin J. The
M-projected partition is then given by ZM��� �P
�;J�jMje

��E�J . In the following, we assume all traces to
be canonical, i.e., at fixed number Z, N of protons and
neutrons, unless otherwise stated.

The Monte Carlo method is based on the Hubbard-
Stratonovich (HS) transformation e��H �

R
D��	G�U�,

where G� is a Gaussian weight and U� is the imaginary-
time propagator of noninteracting nucleons moving in
auxiliary fields �. Using the HS representation, the proba-
bility of finding a state with a given spin projection M at
temperature ��1 is

 

ZM���
Z���

�
hTrMU�

TrU�
��iW

h��iW
; (2)

where we have introduced the notation hX�iW �R
D��	W���X�=

R
D��	W���, and W��� � G�jTrU�j is

a positive-definite function used for the Monte Carlo sam-
pling. �� � TrU�=jTrU�j in (2) is the Monte Carlo sign.

In general U� is not rotationally invariant, and the
M-projected partition TrMU� can be calculated by Jz
projection. To this end, we use the identity

 Tr �ei’kĴzU�� �
XJs

M��Js

ei’kMTrMU�; (3)
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where Js is the maximal many-particle spin in the model
space and ’k assumes a discrete set of values. Using the
2Js � 1 quadrature points ’k � � k

Js�1=2 (k � �Js; . . . Js),

the set of discrete functions �M�’k� � �2Js � 1��1=2ei’kM

is orthonormal,
PJs
k��Js

�M�’k��


M0 �’k� � �MM0 . This or-

thogonality relation can be used to invert (3)

 TrMU� �
1

2Js � 1

XJs
k��Js

e�i’kMTr�ei’kĴzU��: (4)

The trace on the right-hand side of (4) is a canonical
trace at a fixed particle number A (in practice we need to
project on both N and Z), and is calculated from the grand-
canonical traces by a particle-number projection

 Tr �ei’kĴzU�� �
1

Ns

XNs
n�1

e�i�nA det�I� U�n;k�� �: (5)

Here �n � 2�n=Ns and U�n;k�� � ei�nei’kĵzU� is the Ns �
Ns matrix representing the many-particle propagator
ei�nÂei’kĴzU� in theNs-dimensional single-particle space.
In particular, ei’kĵz is a diagonal matrix with elements
ei’kma (ma is the magnetic quantum number of orbital a).
The canonical M-projected partition TrMU� is calculated
from Eqs. (4) and (5).

Similarly, the canonical expectation value of an observ-
able O at fixed M is calculated from

 hOiM �
TrM�Oe��H�

TrMe
��H �

hTrM�OU��
TrU�

��iW

hTrMU�
TrU�

��iW
; (6)

where TrMU� is given by (4), and

 TrM�OU�� �
1

2Js � 1

XJs
k��Js

e�i’kMTr�Oei’kĴzU��: (7)

The canonical trace on the right-hand side of (7) can be
calculated by particle-number projection. For example, for
a one-body operator O �

P
abhajOjbia

y
aab we find an

expression similar to Eq. (5), but each term in the sum
includes the additional factor

 

Tr�ayaabei�nÂei’kĴzU��

Tr�ei�nÂei’kĴzU��
�

�
I

I� U�n;k��1
�

�
ba
; (8)

where here the traces are grand canonical.
The spin-projected partition function at fixed total

spin J is defined by ZJ��� � TrJe
��H �P

�h�JMje
��Hj�JMi �

P
�e
��E�J and is independent

of M. Since e��H is a scalar operator, the J-projected
partition can be expressed as a difference of corresponding
M-projected partitions TrJe��H � TrM�Je��H �
TrM�J�1e��H. Using the HS representation (2) for both
M � J and M � J� 1, we find

 

ZJ���
Z���

�
h�TrM�JU�

TrU�
� TrM�J�1U�

TrU�
���iW

h��iW
; (9)

where TrMU� are calculated as before. It is also possible to
apply the HS transformation directly in ZJ and obtain
ZJ���=Z��� � h�TrJU�=TrU����iW=h��iW . This rela-
tion is not equivalent to Eq. (9) since U� is not rotationally
invariant and TrJU� � TrM�JU� � TrM�J�1U�. The cal-
culation of TrJU� requires a full spin projection and is
considerably more time consuming than the M projection
required in (9). However, a full spin projection would have
the advantage of reducing the statistical errors at low
temperatures.

To calculate the spin-projected expectation value
hOiJ � TrJ�Oe��H�=TrJe��H of a scalar observable O
(e.g., the energy), we note that TrJ�Oe��H� �
TrM�J�Oe

��H� � TrM�J�1�Oe
��H�. Applying the HS

transformation, we find

 hOiJ �
h�TrM�J�OU��

TrU�
� TrM�J�1�OU��

TrU�
���iW

h�TrM�JU�
TrU�

� TrM�J�1U�
TrU�

���iW
; (10)

where the M-projected quantities are calculated as before.
For a good-sign interaction, U� is time-reversal invari-

ant. Since ei’kJz is always time-reversal invariant, so is
ei’kJzU�, and its grand-canonical trace is always positive
(since the eigenvalues of the single-particle matrix
ei’kjzU� come in complex conjugate pairs). When pro-
jected on an even number of particles, Tr�ei’kJzU�� re-
mains almost always positive. In Eq. (4) we are summing
positive numbers with coefficients e�i’kM, leading to
M-projected partition TrMU� that can be nonpositive,
with the exception of the M � 0 case. However, this sign
problem becomes severe only above a certain �, and
typically occurs at smaller values of � as M gets larger.
We encounter a similar situation for the J projection with
the J � 0 projection having no sign problem. In practice,
the level density at higher spin values becomes appreciable
only at higher excitations, and meaningful spin distribu-
tions can be extracted except for very low excitations.

We used the spin projection method to calculate the spin
distribution of the partition function and level density in
the presence of correlations. In particular, we calculated
such spin distributions for 56Fe (an even-even nucleus),
55Fe (odd-even), and 60Co (odd-odd) in the complete
(pf� 0g9=2) shell, and for � in the range from 0 to
�2 MeV�1 using the Hamiltonian of Ref. [7]. The
SMMC results for ZJ=Z, calculated from Eq. (9), are
shown in Fig. 1. For temperatures T � ��1 & 1:5 MeV,
an odd-even staggering is observed in the even-even nu-
cleus 56Fe. In particular, ZJ�0=Z is significantly enhanced
as T decreases. No odd-even spin staggering effect is
observed in the odd-even and odd-odd nuclei.

We calculated spin-projected thermal energies hHiM and
hHiJ as a function of � and used the method of Refs. [7,8]
to obtain the level densities �M�Ex� and �J�Ex� as a func-

PRL 99, 162504 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
19 OCTOBER 2007

162504-2



tion of excitation energy Ex. The total level density ��Ex�
was found from hHi, so we could determine the spin
distribution �J=� at fixed values of the excitation energy.
In Fig. 2 we show the spin distribution of �J=� at several
excitation energies for 56Fe, 55Fe, and 60Co. The solid
squares are the SMMC results, while the solid lines de-
scribe fits (at fixed Ex) to the spin-cutoff model

 �J�Ex� � ��Ex�
�2J� 1�

2
�������
2�
p

�3
e�J�J�1�=2�2

; (11)

with an energy-dependent spin-cutoff parameter � as the
only fit parameter. The spin-projected density �J�Ex� is
normalized such that

P
J�2J� 1��J�Ex�  ��Ex�. Equa-

tion (11) follows from the random coupling model, in
which the distribution of the total spin vector Ĵ is
Gaussian [4]. At intermediate and high excitation energies
the spin-cutoff model seems to work well for all three
nuclei. However, for the even-even nucleus 56Fe, we ob-
serve an odd-even (spin) staggering effect below Ex �
8 MeV that cannot be explained by the spin-cutoff model.

The energy-dependent spin-cutoff parameter �2�Ex�,
obtained by fitting �J=� to Eq. (11), is shown (solid
squares) versus Ex in the top panels of Fig. 3 for 55Fe,
55Fe, and 60Co. The quantity �2 can also be obtained from
fits to �M=� [in the spin-cutoff model �M=� �
�2��2��1=2e�M

2=2�2
] but the results are similar. Despite

the deviation from (11) at Ex & 8 MeV in 56Fe, the fitted
�2�Ex� represents well the average behavior of �J=�.

There are not many data available regarding the spin-
cutoff parameter. A few available experimental data points
are shown for 55Fe [9]. The SMMC calculations are in
general agreement with the experimental data.
�2 is related to an effective moment of inertia I through

 �2 �
IT

@
2 ; (12)

where T is the temperature. Using Eq. (12) we can convert
the SMMC values of �2 to an energy-dependent moment
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FIG. 2. Spin distribution of level densities, �J=�, at constant
excitation energy Ex for 55Fe, 56Fe, and 60Co. The SMMC results
(solid squares) are compared with the spin-cutoff model (11)
with �2 fitted to the SMMC results (solid lines), and with �2

calculated from Eq. (12) using the rigid-body moment of inertia
(dashed lines).
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FIG. 3. Shown from top to bottom are the spin-cutoff parame-
ter �2 (extracted from the spin distributions), the moment of
inertia I in (12) and the J � 0 pair correlation h�y�i for 55Fe
(left panels), 56Fe (middle), and 60Co (right). The SMMC results
for �2 and I are denoted by solid squares. The open circles with
horizontal errors in the �2 panel of 55Fe are experimental data
[9]. The dashed lines correspond to a rigid-body moment of
inertia while the long dashed lines (for 56Fe only) correspond to
half the rigid-body moment of inertia.
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FIG. 1. SMMC spin distributions of the partition function
ZJ=Z for 55Fe (left panels), 56Fe (middle), and 60Co (right).
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of inertia I�Ex�. The results are shown in the middle panels
of Fig. 3 (solid squares). For comparison we also show the
rigid-body value I=@2 � 0:0137A5=3 MeV�1 (dashed
lines), and (for 56Fe only) half the rigid-body value (long
dashed lines) of the moment of inertia. In all three nuclei,
I�Ex� is a monotonically increasing function of Ex and is
close to the rigid-body value at intermediate and high
excitations. However, for energies below �8–10 MeV
we observe a suppression that is particularly strong for
the even-even nucleus 56Fe.

The energy dependence of the moment of inertia ex-
tracted from the spin distributions originates in pair-
ing correlations. To demonstrate that we calculated
the J � 0 ‘‘pair correlation’’ h�y�i, where �y �
P
ama>0

��1�la�ja�ma������������
ja�1=2
p ayjama

ayja�ma
. The SMMC results for pro-

ton, neutron, and proton-neutron pairs are shown versus Ex
in the bottom panels of Fig. 3. The rapid decrease of h�y�i
for p-p and n-n pairs in 56Fe is strongly correlated with the
rapid increase observed of the moment of inertia. The
correlation between I and h�y�i suggests that at low
excitation energy the nucleons behave as condensed BCS
pairs, leading to moment of inertia values that are signifi-
cantly smaller than the rigid-body value. Thus the spin
distributions provide a thermal signature of the pairing
transition. Thermal signatures of pairing correlations
were previously observed in the heat capacity [10,11].
The strong odd-even effect seen in the moment of inertia
can be explained by a simple pairing model plus a number-
parity projection [12].

The strong suppression of the moment of inertia at low
excitations for even-even nuclei has a signature in the J �
0 level density. In Fig. 4 we show the total and J � 0 level

densities for 56Fe. The SMMC total density (squares) is in
good agreement with the backshifted Bethe formula (BBF)
(dotted-dashed line). The SMMC J � 0 level density is
shown by circles. The solid line describes the J � 0 level
density obtained from (11) (and the BBF for the total �)
using the energy-dependent moment of inertia in Fig. 3.
The dashed line is also from Eq. (11) but with a rigid-body
moment of inertia. The rigid-body curve agrees with the
SMMC results at high excitations, but shows deviations
below �8 MeV. The enhancement of the J � 0 level
density for Ex & 8 MeV reflects the decrease of the mo-
ment of inertia by pairing correlations.

To estimate computational cost, we note that spin pro-
jection affects only the calculation time of observables. For
each sample the cost of inverting the matrix U� is �N3

s .
With spin projection it is necessary to invert 2Js � 1
matrices ei�kjzU�, increasing the cost to �JsN3

s . In the
applications above, the Monte Carlo sampling is the domi-
nant part of the calculation and the total computational
time increases by about a factor of 3 only.

In conclusion, we have introduced spin projection meth-
ods in the shell model Monte Carlo approach and used
them to calculate the spin distributions of level densities.
The energy-dependent moment of inertia extracted from
these distributions displays an odd-even effect that is a
signature of the pairing correlations.
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FIG. 4. Total and J � 0 level densities for 56Fe. The total
SMMC level density (solid squares) is well described by the
BBF level density (dotted-dashed line). The J � 0 SMMC level
density (solid circles) is compared to the J � 0 level density
inferred from (11) with the fitted moment of inertia (solid line)
and the rigid-body moment of inertia (dashed line). The sup-
pression of the moment of inertia at low excitations enhances the
J � 0 level density Ex & 8 MeV.
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