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Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of
manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or
Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose
circumventing all these problems inherent in the lattice approach by adopting a nonlattice approach for
one-dimensional supersymmetric gauge theories, which are important in the string or M theory context. In
particular, our method can be used to investigate the gauge-gravity duality from first principles, and to
simulate M theory based on the matrix theory conjecture.
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Introduction.—Lattice gauge theory, together with the
developments of various simulation techniques, has pro-
vided us with a powerful nonperturbative method to study
gauge theories such as QCD. However, when one tries to
apply the method to supersymmetric gauge theories, which
are interesting for many reasons, one has to face some
practical and theoretical obstacles.

First of all, since the algebra of supersymmetry contains
continuous translations, which are broken to discrete ones,
it seems unavoidable to break it on the lattice. Then, one
has to include all the relevant terms allowed by symmetries
preserved on the lattice, and fine-tune the coupling con-
stants to arrive at the desired supersymmetric fixed point in
the continuum limit. Recent progress (See Ref. [1] and
references therein) is that one can reduce the number of
parameters to be fine-tuned (even to zero in some cases) by
preserving some part of supersymmetry. In lower dimen-
sions, one can alternatively take the advantage of super-
renormalizability, and determine the appropriate counter-
terms by perturbative calculations to avoid fine-tuning.
These two approaches can be nicely illustrated in one
dimension by the example of a supersymmetric anhar-
monic oscillator [2,3].

The aim of this Letter is to point out that there exists an
extremely simple and elegant nonlattice method to simu-
late supersymmetric gauge theories in one dimension,
which are important in the string or M theory context.

Recent developments in string theory owe much to the
discovery that the low energy behavior of open strings
attached to a stack of N Dp branes in 10D is described
by (p� 1)-dimensional U�N� supersymmetric gauge the-
ory. The gauge theory can be obtained by dimensionally
reducing 10D N � 1 U�N� super Yang-Mills theory to
p� 1 dimensions. This led to the conjectured gauge-
gravity duality, which states that the strong coupling limit
of large-N gauge theories has a dual description in terms of

classical supergravity. For instance, in the p � 0 case, one
obtains a 1D supersymmetric U�N� gauge theory with 9
adjoint scalars as a low energy effective theory of N D0
branes. In the large-N ’t Hooft limit and in the strong
coupling limit, this theory has a dual description in terms
of a black D0-brane solution in 10D type IIA supergravity
[4]. Using our method, one can confirm the duality by
studying the strongly coupled dynamics of the gauge the-
ory from first principles. Once this is done, one can turn
around and investigate the quantum and/or stringy nature
of the black hole in terms of gauge theory.

A different but closely related set of conjectures assert
that nonperturbative formulations of superstring or M
theory can be given by matrix models, which take the
same form as the low energy effective theory of Dp branes.
In particular, it is conjectured [5] that the aforementioned
1D supersymmetric U�N� gauge theory, in a different
parameter region, actually describes M theory microscopi-
cally. We therefore expect that our method is also useful for
simulating M theory. In that context the system with finite
N corresponds to a sector of M theory compactified on a
lightlike circle [6].

The bosonic version of the 1D gauge theory has been
studied by Monte Carlo simulation using the lattice for-
mulation [7] and the continuum quenched Eguchi-Kawai
model [8]. As for the supersymmetric case, Ref. [9] pro-
poses a lattice formulation, which preserves half of super-
symmetry (SUSY) at the expense of breaking the SO(9)
symmetry.

Let us recall that the importance of the lattice formula-
tion lies in its manifest gauge invariance. In the present 1D
case, however, the gauge dynamics is almost trivial. (We
assume that the 1D direction is compact. The noncompact
case would be easier since the gauge dynamics is com-
pletely trivial.) This gives us an opportunity to use a non-
lattice formulation. More specifically, we first take the
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static diagonal gauge. Using the residual large gauge trans-
formation, we can choose a gauge slice such that the
diagonal elements of the constant gauge field lie within a
minimum interval. Finally we expand the fields into
Fourier modes, and keep only the modes up to some cutoff.
The crucial point of our method is that the gauge symmetry
is completely fixed (up to the global permutation group,
which is kept intact) before introducing the cutoff. This is
specific to one dimension, and the momentum cutoff regu-
larization in higher dimensions generally breaks gauge
invariance.

Supersymmetric anharmonic oscillator.—To gain some
insight into our new approach, we first apply it to a non-
gauge supersymmetric theory, which is well studied by the
lattice formulation. In particular, supersymmetry, which is
broken by the cutoff in our formalism, is restored much
faster than the continuum limit is achieved.

While the manuscript was being prepared, we received a
preprint [10], in which the same model is studied on the
lattice using various methods. As far as nongauge theories
are concerned, our approach is almost equivalent to the
method from the nonlocal SLAC derivative [11]. The only
difference is the identification of the modes at the boundary
of the Brillouin zone in the lattice case. As a consequence,
our results shown in Fig. 1 agree with the corresponding
results in Ref. [10].

The model is defined by the action

 S�
Z �

0
dt
�

1

2
f�@t��2�h0���2g� � f@t�h00���g 

�
; (1)

where � is a real scalar field, and  is a one-component
Dirac field, both in 1D, obeying periodic boundary con-
ditions. This model has two supercharges for arbitrary

function h���, but here we take h��� � 1
2m�

2 � 1
4g�

4.
In our approach we make a Fourier expansion

 ��t� �
X�

n���

~�nei!nt; ! �
2�
�
; (2)

and similarly for the fermionic fields, where n takes integer
values, and � is the UV cutoff. In terms of the Fourier
modes, the action can be written as S � SB � SF, where

 SB � �
� X�
n���

1

2
f�n!�2 �m2g ~�n

~��n

�mg� ~�4�0 �
1

2
g2� ~�6�0

�
;

(3)

 

SF �
X
nk

~� nMnk
~ k;

Mnk � ���in!�m��nk � 3g� ~�2�l�n;k�l�:

(4)

We have introduced a shorthand notation

 �f�1� 	 	 	 f�p��n �
X

k1�			�kp�n

f�1�k1
	 	 	 f�p�kp : (5)

Integrating out the fermions first, we obtain the effective
action for the bosons as Seff � SB � lndetM, where detM
is real positive for positive m and g.

As an efficient algorithm to simulate the model, we use
the idea of the hybrid Monte Carlo (HMC) algorithm [12].
Let us introduce the auxiliary real field ��t�, whose
Fourier components are denoted as ~�n, and consider the
action SHMC � Seff �

P�
n���

1
2

~�n
~��n. Integrating out

the auxiliary field first, we retrieve the original action. In
order to update the fields, we solve the equations

 

d ~�n���
d�

� �n
@SHMC

@ ~�n

� �n ~��n; (6)

 

d ~�n���
d�

� ��n
@SHMC

@ ~�n

� ��n
@Seff

@ ~�n

(7)

along the fictitious time � for a fixed interval �f. The real
coefficients �n should be optimized based on the idea of
the Fourier acceleration [13]. The � evolution, if treated
exactly, conserves the action SHMC. In practice, we discre-
tize it in such a way that the reversibility is maintained (the
leap-frog discretization). Because of the discretization, the
action SHMC changes by a small amount, say �SHMC. In
order to satisfy the detailed balance, we accept the new
configuration with the probability min�1; e��SHMC�, which
is the usual Metropolis procedure. Before we start a new �
evolution, we refresh the ~�n variables by drawing
Gaussian random numbers which follow from the action
SHMC. This procedure is necessary for avoiding the ergo-
dicity problem. (The step size �� should be optimized for
fixed �f by maximizing the acceptance rate times ��. Then
�f should be optimized by minimizing the autocorrelation
time in units of step in the � evolution.)
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FIG. 1. The circles (diamonds) are the mass for the boson
(fermion) obtained by our method for � � 8, 10, 12, 14, 16.
The squares are the results obtained by Catterall and Gregory [2]
with the lattice action preserving half of SUSY, hence degener-
ate. The triangles (inverted triangles) are the mass for the boson
(fermion) obtained by Giedt et al. [3] with the O�a�-improved
lattice action. The horizontal line represents the exact result, and
the dotted lines represent the expected behaviors at large �.
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The main part of the computation is the evaluation of the
term in Eq. (7) given by

 

@Seff

@ ~�n
� ��f�n!�2 �m2g ~��n � 4mg� ~�3��n

� 3g2� ~�5��n� � tr
�
@M

@ ~�n

M�1

�
: (8)

The convolution requires O��2� calculations, while the
inverse M�1 requires O��3� calculations.

As usual, we extract masses from the exponential decay
of the two-point functions

 GB�t� � h��0���t�i � b0 � 2
X�
n�1

bn cos�!nt�; (9)

 GF�t� � h �0� � �t�i �
X�

n���

cne�i!nt; (10)

where we have defined bn � hj ~�nj
2i and cn � h�M�1�nni.

For the fermion, it proved convenient to consider, instead
of (10), a symmetrized correlator

 G�sym�
F �t� �

1

2
fGF�t� �GF��t�g

� c0 � 2
X�
n�1

Re�cn� cos�!nt�; (11)

where we have used the fact �Mnk�

 �M�n;�k. In fact

the functions (9) and (11) with respect to t oscillate with
the frequency of the order of cutoff. This is nothing but the
Gibbs phenomenon due to the sharp cutoff in the sum over
Fourier modes. To overcome this problem, we note that the
coefficients bn behave as bn �

d1

n2 �
d2

n4 at large n as can be
shown from general arguments. We obtain the coefficients
d1 and d2 from the results at n � �� 1, �, and extend the
sum in (9) over n up to 1000 assuming the above asymp-
totic form. We make an analogous analysis for Re�cn� in
(11). In this way we are able to see clear exponential
behaviors, and extract the corresponding masses. The re-
sults for � � 1, m � 10, g � 100 are plotted against 1=�
in Fig. 1. (Note that the effective coupling constant is
g=m2 � 1.) We find that the finite � effects are O�1=��,
and that the data points for the boson and the fermion lie on
top of each other. Thus in our formalism, the effect of
supersymmetry breaking by the cutoff disappears much
faster than 1=�. In the same figure we also plot the results
obtained from lattice formulations for comparison.
(Matching the number of degrees of freedom, we make
an identification � � L

2 , where L is the number of sites.)
Supersymmetric matrix quantum mechanics.—Here we

consider a model with four supercharges defined by
 

S �
1

g2

Z �

0
dttr

�
1

2
�DtXi�

2 �
1

4
�Xi; Xj�

2

� � Dt � � �i�Xi;  �
�
; (12)

where Dt � @t � i�A�t�; 	� represents the covariant deriva-
tive with the gauge field A�t� being an N � N Hermitian
matrix. The bosonic matrices Xi�t� (i � 1, 2, 3) are N � N
Hermitian, and the fermionic matrices  ��t� and � ��t�
(� � 1, 2) are N � N matrices with complex Grassmann
entries. The 2� 2 matrices �i are the Pauli matrices. The
model can be obtained formally by dimensionally reducing
4D N � 1 U�N� super Yang-Mills theory to 1D, and it can
be viewed as a one-dimensional U�N� gauge theory. (The
totally reduced model has been studied by Monte Carlo
simulation in Refs. [14].) Let us assume the boundary
conditions to be periodic for bosons and antiperiodic for
fermions. The extent� in the Euclidean time direction then
corresponds to the inverse temperature � � 1=T. The
parameter g in (12) can always be absorbed by an appro-
priate rescaling of the matrices and the time coordinate t.
Hence we set g � 1���

N
p without loss of generality.

Let us take the static diagonal gauge A�t� �
1
� diag��1; . . . ; �N�, where �a (a � 1; . . . ; N) can be
chosen to lie within the interval ���;�� by making a
gauge transformation with a nonzero winding number
[15]. We have to add to the action a term SFP �

�
P
a<b2 lnj sin�a��b2 j, which appears from the Faddeev-

Popov procedure, and the integration measure for �a is
taken to be uniform.

We expand Xabi �t� �
P�
n���

~Xabin e
i!nt and  ab� �t� �P�

r���
~ ab�re

i!rt into Fourier modes, and similarly for � ,
where r takes half-integer values due to the antiperiodic
boundary conditions, and � � �� 1=2. Equation (12) can
then be written as

 

S � N�
�

1

2

X�
n���

�
n!�

�a � �b
�

�
2

~Xbai;�n ~Xabin

�
1

4
tr�� ~Xi; ~Xj�

2�0

�

� N�
X�
r���

�
i
�
r!�

�a � �b
�

�
~� ba�r ~ ab�r

� ��i���trf~� �r�� ~Xi; ~ ���rg
�
: (13)

The algorithm for simulating (13) is analogous to the
previous model. Here we introduce the auxiliary variables
�i�t� and pa, which are N � N Hermitian matrices con-
jugate to Xi�t� and N real variables conjugate to �a,
respectively. The fermion determinant is real positive,
and the computational effort for one step in the � evolution
is proportional to �3N6. Figures 2 and 3 show the results
for the energy and the Polyakov line, respectively, for the
bosonic and SUSY cases.

In the bosonic case we also plot the results from lattice
simulation with the lattice spacing a � 0:02. (The num-
ber of lattice sites is given by L � 1=�Ta�, which is 50 for
T � 1.) The results obtained by our new method approach
the lattice result as � is increased.
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In the SUSY case, our preliminary results with � � 8
reproduce the asymptotic behavior at high T obtained by
the high temperature expansion (HTE) up to the next-
leading order [16]. (The solid lines represent the results
at the leading order of HTE, which are the same for the
bosonic and SUSY cases.) Note that our method is also
applicable at low T, where the HTE is no more valid.

Summary and concluding remarks.—In this Letter we
have proposed a new simulation method, which enables
nonperturbative studies of supersymmetric gauge theories
in one dimension. For practical implementation, the idea of
the hybrid Monte Carlo algorithm seems to be quite useful.
In particular, the Fourier acceleration requires no extra
cost, since we deal with the Fourier modes directly. The
continuum limit is achieved much faster than one would
expect naively from the number of degrees of freedom.
This is understandable since the Fourier modes omitted by
the cutoff scheme are naturally suppressed by the kinetic

term. The most interesting case with 16 supercharges is
currently under investigation [17].
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FIG. 3. The same as Fig. 2 but for the absolute value of the
Polyakov line.
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FIG. 2. The energy (normalized by N2) is plotted against
temperature for the matrix quantum mechanics with N � 4.
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