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Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most
popular of these, the Barrett-Crane model, does not have the good boundary state space and there are
indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics
that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where
second class constraints are imposed weakly. Its state space matches the SO�3� loop gravity one and it
yields an SO�4�-covariant vertex amplitude for Euclidean loop gravity.
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The kinematics of loop-quantum gravity (LQG) pro-
vides a well-understood background-independent language
for a quantum theory of physical space [1–3]. Its dynamics
is studied along two lines: Hamiltonian (as in the
Schrödinger equation) [4] or covariant (as in Feynman’s
covariant quantum field theory). The key object that de-
fines the dynamics in the second of these is the vertex
amplitude, like the vertex e�� ���< that defines the dy-
namics of perturbative QED. What is the vertex of LQG?

The spin foam formalism [5] is viewed as a possible tool
for answering this question. It can be derived in a remark-
able number of distinct ways, which converge to the defi-
nition of transition amplitudes as a Feynman sum over spin
foams. A spin foam is a two-complex (union of faces,
edges, and vertices) colored with quantum numbers (spins
associated to faces, intertwiners to edges); it can be loosely
interpreted as a spin-network (colored graph) history. Its
amplitude contains the product of vertex amplitudes; so
vertices play a role similar to Feynman’s covariant quan-
tum field theory vertices [6,7]. This picture is nicely im-
plemented in three dimensions by the Ponzano-Regge
model [8], where the spin networks are precisely the
LQG ones [9], and the vertex amplitude is given by the
6j Wigner symbol, which can be obtained as a matrix
element of the Hamiltonian of 3D gravity [10].

Compelling and popular as it is, however, this picture
has never been fully implemented in four dimensions. The
best studied model in the 4D context is the Barrett-Crane
(BC) model [11]. This is simple and elegant, has remark-
able finiteness properties [12], and can be considered a
modification of a topological BF theory, by means of
constraints—called simplicity constraints—whose classi-
cal limit yields precisely the constraints that change BF
theory into general relativity (GR). Furthermore, in the
low-energy limit some of its n-point functions appear to
agree with those computed from perturbative quantum GR
[13]. However, the suspicion that something is wrong with
the BC model has long been agitated [14]. Its boundary
state space is similar, but does not exactly match, that of
LQG; the volume operator is ill defined. Worse, recent
calculations indicate that some n-point functions fail to

yield the correct low-energy limit [15]. All these problems
are related to the way the intertwiner quantum numbers
(associated to the angles between the faces bounding the
elementary quanta of space) are treated: these are fully
constrained in the BC model by imposing the simplicity
constraints as strong operator equations (Cn � 0). But
they are second class and imposing such constraints
strongly may lead to the incorrect elimination of physical
degrees of freedom [16].

It is therefore natural to try to implement in four dimen-
sions the general picture discussed above by correcting the
BC model [7,17]. In this Letter we show that this is
possible, by properly imposing some of the constraints
weakly (h�Cn i � 0), and that the resulting theory has
remarkable features. First, its boundary quantum state
space matches exactly that of SO�3� LQG: no degrees of
freedom are lost. Second, as the degrees of freedom miss-
ing in BC are recovered, the vertex may yield the correct
low-energy n-point functions. Third, the vertex can be seen
as defined on SO�3� spin networks or SO�4� ones, and is
both SO�3� and SO�4� covariant. Finally, the theory can be
obtained as a bona fide quantization of a discretization of
Euclidean GR on a Regge triangulation. Here we give the
definition of the theory, illustrate its main aspects and give
only a rapid sketch of its derivation from Regge GR.
Details are given elsewhere. We stress that we work in
the Euclidean context: real Lorentzian gravity, which could
be quite different, will be discussed elsewhere.

The model we discuss is defined by a standard spin foam
partition function

 ZGR �
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where the amplitude is given by
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Notation is as follows. The model is defined on a fixed
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cellular complex, dual to a 4D triangulation �. We do not
discuss the recovery of triangulation independence
[2,11,18]. The 2-skeleton of the complex defines the spin
foam. This is made by faces f, edges e, and vertices v;
dual, respectively, to triangles, tetrahedra, and 4-simplices
of �. The sum in (1) is over an assignment of an integer
spin lf, or an irreducible representation (irrep) of SO�3�, to
each face f, and an intertwiner ie to each edge e. More
precisely, the ie sum is over a basis in the linear intertwiner
space at each edge. Recall that an intertwiner is an element
of the SO�3� invariant subspace of the tensor product of the
Hilbert spaces carrying the irreps associated to the four f’s
adjacent to an e. We use the usual basis given by the spin of
the virtual link, under a fixed pairing of the four faces.
dimj � 2j� 1 is the dimension of the spin-j irrep, for j 2
Z=2. 15jSO�4� is the Wigner 15j symbol of the group SO�4�.
It is a function of 15 SO�4� irreps. An SO�4� irrep can be
written as a pair of SU�2� irreps, in the form (j�, j�), and
the SO�4� 15j is the product of two Wigner SU�2� 15j’s

 15jSO�4��j
�
f ; j

�
f ; i�e ; i

�
e � � 15j�j�f ; i

�
e �15j�j�f ; i

�
e �: (3)

The last object to define, and our key ingredient, is the
linear map f in the first line of (2). This is from the space of
the SO�3� intertwiners between the irreps l1; . . . ; l4, to the
space of the SO�4� intertwiners between the irreps
�j1; j1�; . . . ; �j4; j4�, where (and from now on)

 jf � lf=2: (4)

The second line of (2) expresses this map in terms of its
linear coefficients fjii �

P
i�;i�f

i
i�i�ji

�; i�i. These are de-
fined as the evaluation of the spin network

 (5)

on the trivial connection. The amplitude can be equiva-
lently written in the form

 A�lf; ie� �
Z
SU�2�5

dVeh
O
ee0
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Index contraction is dictated by the 4-simplex graph and
the lf intertwiner indices are contracted with the lf

2 	
lf
2

representation indices of the matrices D. This concludes
the definition of the model (for the general formalism, and
details see [2]). We now comment on its features.

First, the boundary states of the theory are spanned by 4-
valent graphs colored with SO�3� spins and intertwiners.
Second, the model is a simple modification of the BC
model as follows. The BC model is given by

 ZBC �
X
jf

Y
f

�dimjf�
2
Y
v

ABC�jf�; (7)

where here the sum is over half-integer spins and

 ABC�jf� � 15jSO�4��jf; jf; iBC�: (8)

The difference between the two theories is in the inter-
twiner state space. The common unconstrained intertwiner
space is the SO�4� intertwiner space between four simple
representations He � Inv�H�j1;j1�

	 . . . 	H�j4;j4�
�. The BC

theory constrains each intertwiner to be the unique ‘‘BC
intertwiner’’ jiBCi �

P
j�2j� 1�jj; ji. The BC theory

therefore constrains entirely the intertwiner degrees of
freedom. In the model (1), instead, these remain free.
More precisely, the states fjii span a subspace Ke of He.
The step from the single intertwiner iBC to the space Ke is
the essential modification made with respect to the BC
model. Why this step?

The reduction of the intertwiner space to the sole iBC

vector is commonly motivated by the imposition of the off-
diagonal simplicity constraints. For each couple of faces f,
f0 adjacent to e, consider the pseudoscalar SO�4� Casimir
operator

 Ĉ ff0 � �IJKLĴ
IJ
f Ĵ

KL
f0 (9)

on the representation (H�jf;jf� 	H�jf0 ;jf0 �). (�IJKL is the fully

antisymmetric object and summation over repeated indices
is understood.) Here f � f0 and ĴIJf with I, J � 1; . . . ; 4
are the generators of SO�4� in H�jf;jf�. These are the
quantum operators corresponding to the classical bivector
JIJf associated to the face f. Cff0 � �IJKLJ

IJ
f J

KL
f0 vanishes

in the classical theory because the bivectors of the faces in
a single tetrahedron span a 3D space and therefore their
external products are zero. These are the off-diagonal
simplicity constraints. (The diagonal ones Ĉff � 0 con-
strains the irrep of each f to be simple.) In BC theory, the
constraints Ĉff0 � 0 are imposed strongly on He, and the
only solution is iBC [19]. But these constraints do not
commute with one another, and are therefore second class.
Imposing such constraints strongly is a well-known way of
erroneously killing physical degrees of freedom.

An alternative way to write the classical off-diagonal
simplicity constraints is the following. As noted, these
constraints impose the faces of the tetrahedron to lie on a
common 3D subspace of 4D spacetime. If and only if they
are satisfied, there is a direction nI orthogonal to all the
faces: the direction normal to the tetrahedron. The Jf have
vanishing components in this direction. Choose coordi-
nates in which nI � �0; 0; 0; 1� and let i, j be indices that
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run over the first 3 coordinates only. Then we have 2C4 �
1
2 J

IJ
f J

IJ
f �

1
2 J

ij
f J

ij
f � C3. The off-diagonal simplicity con-

straints can therefore be written as the requirement that
there is a common direction n such that

 2C4 � C3 � 0 (10)

for all the faces of the tetrahedron. Can this constraint be
imposed quantum mechanically on He?

In the quantum context, Ĉ4 �
1
4 Ĵ

IJ
f Ĵ

IJ
f is the quadratic

Casimir operator of SO�4�, with eigenvalues j��j� �
1�@2 � j��j� � 1�@2, while Ĉ3 �

1
2 Ĵ

ij
f Ĵ

ij
f is the quadratic

Casimir operator of the SO�3� subgroup of SO�4� that
leaves nI invariant, with eigenvalues j�j� 1�@2, where
we have momentarily restored @ � 1 units for clarity. A
simple SO�4� irrep (j, j) transforms under the SO�3� sub-
group in the representation j 	 j � 0 
 . . . 
 2j. The 2j
component, namely, the highest SO�3� irreducible, is char-
acterized by the relation

 

��������������������
2Ĉ4 � @

2
q

�
����������������������
Ĉ3 � @

2=4
q

� @=2 � 0: (11)

But this relation reduces precisely to (10) when @! 0, and
therefore can be considered as a possible quantum version
of the classical constraint (10). Imposing the constraints on
each face thus selects from (H�jf1

;jf1
� 	 . . . 	H�jf4

;jf4
�) the

space formed by the tensor product of the highest SO�3�
irreducibles. This depends on which SO�3� subgroup is
chosen, but if we project to the SO�4�-invariant space,
the dependence drops out because all SO�3� subgroups in
SO�4� are conjugate. A direct calculation shows that what
we obtain is precisely the intertwiner space Ke defined
above. Finally, it is easy to check that the off-diagonal
simplicity constraints are all weakly zero in this space: they
are antisymmetric in the i�, i� indices, while the states fjii
are symmetric.

We close by sketching the derivation of the model as a
quantization of a discretization of GR (see [20]). Fix an
oriented triangulation � and restrict the metric to be a
Regge one on �: flat within each 4-simplex, with curvature
on the triangles. To describe it, choose a cotetrad one-form
eI�t� for each tetrahedron t (notice the change of notation
e! t), and also one eI�v� for each simplex. The two are
related by an SO�4� element Vvt � V�1

tv . For each face in
each tetrahedron, define Bf�t� �

R
f ?�e�t� ^ e�t��, where

the star is Hodge duality in R4. Bf�t� and Bf�t0� are related
by Bf�t�Utt0 � Utt0Bf�t

0�, where Utt0 � VtvVvt00 . . .Vvnt0 is
the product of the group elements around the oriented
perimeter of f, from t to t0. The bulk action can be written
as

 Sbulk�e� �
1

2

X
f

Tr�Bf�t�Uf�t��; (12)

where Uf�t� is the product of the group elements VtvVvt0
around the full perimeter of f. The boundary terms of the

action can be written as

 Sboundary�e� �
1

2

X
f

Tr�Bf�t�Utt0 �; (13)

where Utt0 is the product of the group elements of the part
of the perimeter which is not in the boundary. We take
Bf�t� and Vtv as basic variables, and take into account the
constraints on Bf. These are the closure constraint

 

X
f2t

Bf�t� � 0 (14)

and the simplicity constraints (9), for all f, f0 (possibly
equal) in t. (The constraints relating triangles that meet
only at one point, which appear in other formulations, are
automatically solved by the choice of variables.)

On the boundary, the boundary coordinates are the Bf�t�
for the boundary triangles f. Each f has only two adjacent
tetrahedra t, t0 on the boundary. The conjugate momentum
[as can be seen from (13)] is a group element for each f.
Therefore the canonical boundary variables are the same as
those of SO�4� lattice gauge theory. We can thus choose the
Hilbert space of SO�4� lattice gauge theory as our uncon-
strained Hilbert space. This can be represented as the L2

space on the product of one SO�4� per triangle. However,
in order to match with the solution of the constraints
considered, we interpret the SO�4� generators Jf (the right
invariant vector fields) that are defined on this space as the
quantum operators corresponding to the dual ?Bf of the
variable Bf, namely, to the geometrical bivectors

R
f e ^ e

associated to the triangles [21]. The constraint (14) gives
gauge-invariance at each tetrahedron, and reduces the
space of states to the space of the SO�4� spin networks
on the graph dual to the boundary triangulation. The sim-
plicity constraints (9), as above, reduce each SO�4� link
representation to a simple one, and the intertwiner spaces
to Ke. The resulting space of states is not only mathemati-
cally isomorphic to the corresponding one of SO�3� LQG,
(the two spaces are spanned by spin-networks labeled by
the same spins and intertwiners) but it can also be physi-
cally identified with it, because we have an explicit iden-
tification of eigenstates of quantum operators with the
same classical analogs (such as the areas of faces).

Finally, coming to the dynamics, we can evaluate the
amplitude of a single 4-simplex v, in order to derive the
form of the vertex amplitude. Fixing the ten Btt0 � Bf�t�
variables on the boundary, this can be formally written

 A�Btt0 � �
Z
dVvte

i
P

Tr�Btt0VtvVvt0 �: (15)

Transforming to the conjugate variables gives

PRL 99, 161301 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
19 OCTOBER 2007

161301-3



 A�Utt0 � �
Z
dBtt0e

�i
P

Tr�Btt0Utt0 �A�Btt0 �

�
Z
dVvt

Y
tt0
��Utt0Vt0vVvt�: (16)

This is the amplitude. We transform back to the spin-
network basis, using the SO�4� spin-network functions
�j


tt0
;i
t
�Utt0 �

 A�j
tt0 ; i


t � �

Z
dUtt0�j


tt0
;i
t
�Utt0 �A�Utt0 �

�
Z
dVvt�j


tt0
;i
t
�VtvVvt0 �

� 15jSO�4��j�tt0 ; j
�
tt0 ; i

�
t ; i�t �: (17)

Combining this 15jSO�4� amplitude with the constraints
discussed, gives the model (1) and (2).
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