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Using a generalized Langevin equation of motion, quantum thermal transport is obtained from classical
molecular dynamics. This is possible because the heat baths are represented by random noises obeying
quantum Bose-Einstein statistics. The numerical method gives asymptotically exact results in both the
low-temperature ballistic transport regime and the high-temperature strongly nonlinear classical regime.
The method is a quasiclassical approximation to the quantum transport problem. A one-dimensional
quartic on-site model is used to demonstrate the crossover from ballistic to diffusive thermal transport.
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Many approaches have been used to study lattice heat
transport in bulk materials and nanostructures. For bulk
materials, the standard method is that of Peierls based on
Boltzmann equation for phonons [1,2]. For quasi-one-
dimensional systems and nanojunctions, a variety of tech-
niques has been used, such as molecular dynamics (MD)
[3,4], mode-coupling theory [5], nonequilibrium Green’s
function (NEGF) method [6—10], Schrodinger equation
method [11], quantum Langevin dynamics [12,13], rigor-
ous Boltzmann equations [14], etc. One of the outstanding
problems in heat transport is to reconcile the ballistic
nature at low temperatures with the diffusive one at high
temperatures. As far as we know, the methods mentioned
above work only in either the ballistic regime or the diffuse
regime, but not in both.

Molecular dynamics has the potential to be such a
universal method for heat transport. However, since MD
is based on classical Newtonian mechanics, the quantum
effect is completely absent. Thus, we cannot expect that it
is still correct at low temperatures. In fact, due to a very
high Debye temperature for carbon based materials, even
300 K is considered a low temperature. The kinetic theory
of heat transport for phonons gives the thermal conductiv-
ity as k = %cvl, where ¢ is heat capacity, v is sound
velocity, and [ is the mean free path. The reduction of the
thermal conductivity at low temperatures is mainly due to
the much reduced quantum heat capacity c, but a classical
MD can only produce a constant heat capacity.

Can we simulate a quantum system within MD? At first
sight, this seems impossible, since classical dynamics can
only produce classical results. In this Letter, we show that
the heat transport problem in junction systems can be
studied with a classical generalized Langevin dynamics
using a quantum heat bath derived from Bose-Einstein
statistics. Such a treatment is known as a quasiclassical
approximation to the quantum Langevin equations [15,16].
Instead of the generic Nosé-Hoover heat bath, it is essential
to use the generalized Langevin dynamics with a memory
kernel and colored noises to correctly account for the effect
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of the baths. The heat baths are modeled as infinite num-
bers of coupled harmonic oscillators. A remarkable feature
of the proposed dynamics is that it reproduces the quantum
ballistic result at low temperature when nonlinearity can be
neglected, as well as gives a correct high-temperature,
strongly nonlinear result. This appears to be the only
method that is numerically exact in both limits. Our
method is inspired by the NEGF approach [9] to heat
transport and also the quantum Langevin approach [13]
to the same problem.

In the rest of the Letter, we introduce the model and
derive the equations involved. We then compare the MD
results with Landauer formula and with the nonlinear
NEGEF results. We treat a one-dimensional (1D) quartic
nonlinear on-site model, in which we have seen ballistic
transport at temperatures below 200 K, and diffusive trans-
port about 1000 K for lattice sizes up to 4096.

The general setup of our system consists of a central
junction region connected to two semi-infinite harmonic
lattices which serve as leads. The Hamiltonian of the
system is

H = H, + (u)TVECyC + uC)TVveRyR + v,
a=L,C,R

(D

where H, = 3(a*)7a* + 3 (u*)"K*u®, u® is a column
vector consisting of all the displacement variables in region
a (=L, C, R), and u* is the corresponding conjugate
momentum. The superscript T stands for matrix transpose.
We have chosen a renormalized displacement u; = _ /m;x;
where m; is the mass associated with jth degree of free-
dom, x; is the actual displacement having the dimension of
length. K¢ is the spring constant matrix, and V'€ =
(VEO)T is the coupling matrix of the left lead to the central
region, similarly for VCR. V, is a nonlinear potential which
depends only on u€. The equations of motion are

i ¢ = —Ku® + F,(") — VCtut — VRuR,(2)
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The heat-bath degrees of freedom u* and u* can be elim-
inated by solving them in terms of the central variables and
initial conditions, given, e.g., for the left lead

ag(t ¢
ul(r) = /t g(t, 1 )\VECUC(d)dr' + —gét 0) ul (1)
fy 0

— g(t to)i" (to), (5)

where the matrix g(z, ¢') is the time-domain retarded sur-
face Green’s function of the left lead obtained by the
solution of

2 /
% + g, 1)KE = —=8(1 — 1)1, ©)

with the condition g(z, #) = 0if r — ¢ < 0.

Substituting the formal solutions of the leads into the
central region, we obtain the following generalized
Langevin equation [13,17,18] for the central part of the
degrees of freedom

i € = — KCuC + F,(uC) - f S (1, () dr + £, + £,
(7)

where F, is the nonlinear force, the matrix X is the
retarded self-energy of the leads, 2 = 3; + 3, as used
in NEGF calculation, but in the time domain; X; =
VCLgVLC A similar expression holds for the right lead
Sz using the right lead surface Green’s function.
Contribution from the left lead due to the initial conditions
is

() = VCL(&’(R to)ut(tp) — %JO)ML(IO)) )

The right lead &5 is analogous. The initial time 7, will be
set to —oo. Using the concept of adiabatic switch-on, at
time —oo, the three subsystems, left lead, central region,
and right lead, are decoupled, and the leads are in respec-
tive thermal equilibrium. We turn Eq. (7) into a stochastic
differential equation by requiring that u*(z,) and i*(z,) are
random variables.

So far we have treated the system as a classical system.
However, at this point, we will make a departure and
consider the leads quantum mechanically. At time 7, —
—oo, the leads are isolated. We assume that the leads obey a
quantum Bose-Einstein statistics. This induces a random
vector &, (¢) having zero mean, (£, (t)) = 0, and the fol-
lowing correlation matrix

+ g(1, 1)tk (o) in(19) g (¢, 19) ' IVEC.
9

For a sensible heat bath, the correlation should be time
translationally invariant and independent of f,. Indeed,
great simplification can be done if we use the eigenmode
representation for the matrix g:
sinw ;(t—¢'

gt 1) =STg!s, gi=-0(:— t’)#, (10)

w .

J

where S is the orthogonal matrix that diagonalizes KZ,
SKEST = Q2, O? is a diagonal matrix with diagonal ele-
ments w?; w;s are the positive eigenfrequencies.
Substituting this result into the correlation expression,
also using the quantum equilibrium correlation values for

(uu™y, (au’), (un”), and (@u’), we get
(EL(0)EL(NT) = VELSTDSVEC, (11)

where D is a diagonal matrix with elements D; =

[f(w;) + %]wiij cosw;(t — 1) + 21.’(’0]_ sinw;(t — 1), f(w) =
[exp(hw/kgT,) — 1]7" is the Bose-Einstein (or Planck)
distribution function at the temperature of the left lead.

We notice that D is complex. The imaginary part comes
from the fact that in quantum mechanics, £(¢) and £(¢') are
noncommuting, and the product of the two is not a
Hermitian operator. If we use a symmetrized correlation
%(fj(t)fl(t’) + £,(')€,(2)), it then can be interpreted prop-
erly in a classical dynamics. The second term is obtained
by interchanging r and # and taking the transpose. The final
effect is simply to drop the imaginary term. The symme-
trized correlation together with the classical Langevin
equation, Eq. (7), consists of the so-called quasiclassical
approximation [15].

Then the question arises that such a treatment will not
give correctly the quantum results. For nonlinear systems it
is an approximation, but it is exact, at least for the expres-
sion of heat current, for linear systems. It can be shown
rigorously that, with the symmetrized heat baths, we re-
produce the Landauer result with Caroli formula as the
transmission coefficient. However, the symmetrization
does have a consequence to the quantum heat-current
fluctuations.

Using the (surface) density of states, the expression can
be further simplified to get a rather compact result for the
spectrum of the noises [13],

Flol= [ (i) dr = f(w) + il o)
(12)
where I'; [w]=i(3,[0] — 2, [w]T) = —2ImV L g[@]VEC.
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The spectrum function F[w] is even in @ and is a sym-
metric, positive semidefinite matrix. The classical limit is
obtained if we take [ f(w) + 1/2h = kzT, /w, where kg is
the Boltzmann constant and 7 is the temperature of the
left lead.

The thermal current in steady state can be computed in
several equivalent ways

1= ~lx = () = (@ Vieu)
= —uCOTb(1)) = (uC()Tb(1)), (13)
where b(1) = — [} Z.(1, NuC()dt + &£,.(2).

The stochastic differential equation, Eq. (7), can be
solved numerically in a straightforward way. Both the
memory function (retarded self-energy 3,) and the noise
spectrum F can be obtained through the surface Green’s
function g. Efficient recursive algorithms exist for the
solution of g [9,19]. A set of past coordinates, (), needs
to be stored, in order to perform a numerical integration
with the self-energy. We can use a simple rectangular rule
for the integration. The random noises can be generated
using a spectrum method [20]. Let the discrete Fourier
transform of &(r) be mn=7n*, =a; tib;,, k=
-M/2,---,—1,0,1,--+-,M/2 — 1, where M is the num-
ber of sampling points in the discrete Fourier transform.
Then the noises can be generated by taking real vectors a;,
and b; (k> 0) as independent Gaussian random num-
bers with zero mean and covariance matrix %F [wy]hM,
where h is the integration step size, and w; = 27k/(hM).
The noise values at the required times are obtained by
an inverse fast Fourier transform as &(r= hl) =
7 > i exp(—i2alk/M). The numerical integration of
Eq. (7) is not substantially more expensive than standard
MD. This is because the forces are usually short-ranged;
we only need to do the extra work for these sites that are
directly connected to the leads.

To illustrate the general method, we consider a 1D
model with a quartic on-site potential (¢* model). Such a
model is known to have diffusive transport in the classical
limit [21]. The equation of motion is given by

We divide the system into three regions, j = 0,0 < j = N,
and j > N, as the left lead, central region, and right lead.
The nonlinear term is zero in the leads, i.e., u; = pif 1 =
J = N and p; = 0 otherwise. The relevant spring constant
matrices can be read off from Eq. (14), e.g., K* is tridiag-
onal with diagonal elements equal to 2K + K, and off-
diagonals equal to —K; Vi¢ = 0 except for V{{ = —K.
The required surface Green’s function can be obtained
analytically in frequency domain as gyplw] = —A/K,
where A is the root of the quadratic equation, KA~! +
(w +i0")> — 2K — Ky + KA = 0, such that [A| < 1. The
nonzero (1,1) and (N, N) elements for 3, and I are obtained
from g. We use the following expression for the heat

current [3],

K
P = S Gy + )~ ) (9

Because of energy conservation along the chain, one can
show that Eq. (15) agrees with the definition, Eq. (13).

We now present our numerical results. First, when the
system is linear, u; = 0, the heat current can be computed
exactly through the Landauer-Caroli formula, I; = ;- X
[§ dwhwTr(G'T G Tg)(f, — fr), where G" = (G*) =
[(w +i0%)?> — K€ — X]7'. The molecular dynamics with
the quantum heat bath reproduces this result exactly. In
Fig. 1, we present the comparison of the MD and the exact
curve. The conductance is defined by

. I
o= lim ————.
T,—-Tx Ty — Tg

(16)
A numerical finite difference with 10% deviation from the
average temperature is used. Within statistical errors (esti-
mated from the fluctuation of multiple runs), the agreement
is perfect. For the ballistic transport, the thermal conduc-
tance is independent of the lengths N of the chain.

A nontrivial result is obtained when the system has
nonlinear interactions. This is presented in Fig. 2. With a
nonlinear strength of u = 1 [eV/(amu? A*)], we get quan-
titatively correct result of ballistic transport at low tem-
peratures and small sizes (o « N°) and diffusive transport
at high temperatures and large sizes (o « 1/N). The low-
temperature results can be compared with the NEGF ones.
This is presented as smooth curves in Fig. 2. The NEGF
results are computed with a mean-field approximation to
the self-energies [9]. The Green’s functions are iterated in
equilibrium and the conductance is calculated with an
approximate formula for the transmission, T[w]=
% Tr{G"(I'y, + %Fn)G”FR} + % Tr{GT',G"(I'x + %Fn)},
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FIG. 1 (color online). Thermal conductance o as a function of
temperature for the 1D on-site model without the nonlinear
interaction, with spring constant K = 1.0 eV/(amu A?), K, =
0.1 K. The smooth curve is the Landauer formula result, while
the symbols are MD results with a size N = 8. The time step
h=10"10 s and 5 X 10® MD steps each are used.
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FIG. 2 (color online). Thermal conductance o for the 1D on-
site model with a nonlinear interaction w = 1 eV/(amu? A%),
spring constant K = 1.0 eV/(amu A?), K, = 0.1 K. The smooth
curves are the NEGF results for sizes N = 4 and 32, respec-
tively, while the symbols are MD results with size N from 4, 16,
64, 256, 1024, to 4096, from top to bottom. The dashed lines are
MD results with classical heat bath for size N =4 (top) and
1024 (bottom). The time step h = 1076 s and 108 MD steps
each are used.

where the nonlinear effect is reflected in the extra nonlinear
self-energy, I', = i(3}, — 24). The MD and NEGF results
agree with each other at the low-temperature side very
well. Clearly, the nonlinear NEGF results are not exact at
high temperatures. Thus the deviation there between MD
and NEGF is understandable. When classical heat baths are
used, then as the temperature decreases, the thermal con-
ductance increases monotonically to a size-independent
ballistic limit of (@ — @Wmin)kp/(27), where @, —
® min 18 the phonon band width. The classical and quantum
heat-bath results converge to the same value at sufficiently
high temperatures. At the intermediate range of tempera-
tures, no reliable methods exist that can be compared with
the quantum MD results. In this difficult temperature
range, the MD results are the only numbers to offer.
Whether we see ballistic or diffusive transport in a given
temperature is determined by the mean free path of the
phonons in comparison with the system size N. From the
data in Fig. 2, we can judge that the mean free path is about
103 lattice spacings in the temperature range of 1000 K.

The dynamics (with equal temperatures for the two
leads) also gives correctly the quantum average energy
using the classical total energy expression as an estimator.
By numerical differentiation, we also obtained the correct
quantum heat capacity. This is consistent with the fact that
quantum conductance is calculated correctly. Data will be
presented elsewhere.

In summary, we have shown that a generalized Langevin
dynamics from a classical stochastic differential equation
can reproduce quantum ballistic transport if the heat baths
follow the quantum prescription. This is achievable be-
cause there is very little difference between a quantum and
a classical system if the system is linear. The dynamics is
such that it smoothly crosses over to the classical regime.

Thus the method produces correctly results both in the
quantum ballistic limit and classical diffusive limit. We
have applied the method to a simple 1D on-site model.
Clearly, it is generally applicable. For example, we can use
the approach to study ballistic and diffusive thermal trans-
port in carbon nanotubes and graphene ribbons. We can
also study the nonlinear effect in interfaces. The present
method opens new way for studying quantum transport and
nonlinearity.
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