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A procedure that allows us to obtain the dynamics of N independent bodies each locally interacting with
its own reservoir is presented. It relies on the knowledge of single-body dynamics and it is valid for any
form of environment noise. It is then applied to the study of non-Markovian dynamics of two independent
qubits, each locally interacting with a zero-temperature reservoir. It is shown that, although no interaction
is present or mediated between the qubits, there is a revival of their entanglement, after a finite period of
time of its complete disappearance.
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Entanglement is relevant to different fundamental [1,2]
aspects of quantum theory and practical aspects of
quantum-information processing [3]. Recently much inter-
est has arisen in the evolution of the joint entanglement of a
pair of qubits exposed to local noisy environments. The
reason is related to the discovery by Yu and Eberly [4]
that for this system, rather surprisingly, the Markovian
dynamics of the joint qubits entanglement and single qubit
decoherence may be rather different. The aspect that has
mostly drawn attention is the possibility of a complete
disappearance of entanglement at finite times. The occur-
rence of this phenomenon, termed ‘‘entanglement sudden
death’’ (ESD), has been shown in a quantum optics experi-
ment [5]. The intrinsic interest and potential importance of
ESD, for example, in the application range of quantum
error correction methods, has led to a flow of analysis that
studies its appearance under different circumstances [6–
13].

Disentanglement is related to the birth of body-
environment correlations. It is therefore of interest to in-
vestigate the role played on its evolution by non-
Markovian effects. In fact, although Markovian dynamics
includes a level of backreaction, it neglects the entangle-
ment that arises between bodies and bath modes during the
evolution. Although some work has treated of this aspect
[14–18], it should be considered an attractive theoretical
challenge to extend the results obtained under various
conditions in the Markovian regime to the non-
Markovian case [19]. The aim of this Letter is to address
this point first by adopting a procedure to obtain the dy-
namics of N independent bodies, locally interacting with
reservoirs and without restriction on the nature of environ-
mental noise, if the single-body dynamics is known. We
shall then use this approach to explicitly investigate the
entanglement dynamics of two qubits locally interacting
with a zero-temperature non-Markovian environment.

To describe the method, we consider a system formed by
two noninteracting parts ~A, ~B, each part consisting of a
qubit S � A, B locally interacting, respectively, with a
reservoir RS � RA, RB. Each qubit and the corresponding

reservoir are initially considered independent. For each
part, the reduced density matrix evolution for the single
qubit S � A, B is given by

 �̂ S�t� � TrRSfÛ
~S�t��̂S�0� � �̂RS�0�Û

~Sy�t�g; (1)

where the trace is over the reservoir RS degrees of freedom
and Û~S�t� is the time evolution operator for the part ~S. In
terms of the Kraus operators WS

�;��t�, the former equation
becomes [20]

 �̂ S�t� �
X
��

WS
���t��̂

S�0�WyS���t�: (2)

The assumption of independent parts implies that the time
evolution operator Û ~T�t� of the complete system ~T � ~A�
~B factorizes as Û ~T�t� � Û

~A�t� � Û ~B�t�. It follows that the
Kraus representation of the reduced density matrix for the
two-qubit system T � A� B reads like

 �̂ T�t� �
X
��

X
��

WA
���t�W

B
���t��̂

T�0�WyA���t�W
yB
�� �t�: (3)

Given the basis fj0i; j1ig for each qubit, inserting unity
operators I � j0ih0j � j1ih1j between Kraus operators
and density matrices in Eq. (2), it follows that the dynamics
of each qubit has the form
 

�Aii0 �t� �
X
ll0
All

0

ii0 �t��
A
ll0 �0�;

�Bjj0 �t� �
X
mm0
Bmm

0

jj0 �t��
B
mm0 �0�:

(4)

Adopting the same procedure for �̂T in the form of Eq. (3),
the dynamics of the two-qubit system is given by

 �Tii0;jj0 �t� �
X

ll0;mm0
All

0

ii0 �t�B
mm0
jj0 �t��

T
ll0;mm0 �0�; (5)

where the indexes i, j, l, m � 0, 1. Equations (4) and (5)
clearly show that the dynamics of two-qubit density matrix
elements can be obtained by knowing that of the single
qubit. The validity of the above procedure can be straight-
forwardly extended to any multipartite and multilevel sys-
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tem (qudit), provided that the different parts,
‘‘qudit� reservoir,’’ are independent.

We now apply the results obtained above to study non-
Markovian effects on the entanglement dynamics of two
qubits, each interacting only and independently with its
local environment. To this aim, we shall consider the single
‘‘qubit� reservoir’’ Hamiltonian given by

 H � !0���� �
X
k

!kb
y
k bk � ���B� ��B

y�; (6)

with B �
P
kgkbk, where !0 is the transition frequency of

the two-level system (qubit) and �� are the system raising
and lowering operators while the index k labels the field
modes of the reservoir with frequencies !k, b

y
k and bk are

the modes’ creation and annihilation operators, and gk are
the coupling constants. The Hamiltonian of Eq. (6) may
describe various systems as, for example, a qubit formed
by an exciton in a potential well environment. However, to
fix our ideas we shall take it to represent a qubit formed by
the excited and ground electronic state of a two-level atom
interacting with the reservoir formed by the quantized
modes of a high-Q cavity. At zero-temperature, this
Hamiltonian represents one of the few open quantum
systems amenable to an exact solution [21]. The dynamics
of qubit S is known to be described by the reduced density
matrix [22,23]

 �̂ S�t� �
�S11�0�Pt �S10�0�

�����
Pt
p

�S01�0�
�����
Pt
p

�S00�0� � �
S
11�0��1� Pt�

� �
; (7)

where the function Pt obeys the differential equation

 

_P t � �
Z t

0
dt1f�t� t1�Pt1 ; (8)

and the correlation function f�t� t1� is related to the
spectral density J�!� of the reservoir by

 f�t� t1� �
Z
d!J�!� exp�i�!0 �!��t� t1�	: (9)

The exact form of Pt thus depends on the particular choice
for the spectral density of the reservoir. Because the
Hamiltonian of Eq. (6) represents a model for the damping
of an atom in a cavity, we consider then the case of a single
excitation in the atom-cavity system. For the effective
spectral density J�!�, we take the spectral distribution of
an electromagnetic field inside an imperfect cavity sup-
porting the mode!0, resulting from the combination of the
reservoir spectrum and the system-reservoir coupling with
�0 related to the microscopic system-reservoir coupling
constant, of the form [22]

 J�!� �
1

2�
�0�2

�!0 �!�
2 � �2 : (10)

The correlation function (9) corresponding to the spectral
density of Eq. (10) has an exponential form with � as the
decay rate. The parameter �, defining the spectral width of

the coupling, is then connected to the reservoir correlation
time 	B by the relation 	B 
 ��1. On the other hand, the
parameter �0 can be shown to be related to the decay of the
excited state of the atom in the Markovian limit of flat
spectrum. The relaxation time scale 	R over which the state
of the system changes is then related to �0 by 	R 
 ��1

0 .
Using the spectral density of Eq. (10) in the correlation

function of Eq. (9), in the subsequent analysis of the
function Pt of Eq. (8), typically a weak and a strong
coupling regime can be distinguished. For a weak regime
we mean the case �0 < �=2, that is, 	R > 2	B. In this
regime the relaxation time is greater than the reservoir
correlation time and the behavior of Pt is essentially a
Markovian exponential decay controlled by �0. In the
strong coupling regime, that is, for �0 > �=2, or 	R <
2	B, the reservoir correlation time is greater than or of
the same order as the relaxation time and non-Markovian
effects become relevant. For this reason we are interested
in this regime and we shall mainly limit our considerations
to this case. Within this regime, the function Pt assumes
the form [22,23]

 Pt � e��t
�

cos
�
dt
2

�
�
�
d

sin
�
dt
2

��
2
; (11)

where d �
�����������������������
2�0�� �2

p
. Pt presents oscillations describ-

ing the fact that the decay of the atom excited state is
induced by the coherent processes between the system and
the reservoir. In particular, the function Pt has discrete
zeros at tn � 2�n�� arctan�d=��	=d, with n integer. We
note that the solution in the weak coupling regime can be
obtained by the former one simply substituting the har-
monic functions with the corresponding hyperbolic ones
and d with id.

Now we are ready to use, following the procedure
described before, the evolution of the reduced density
matrix elements for the single qubit to construct the re-
duced density matrix �̂T for the two-qubit system. In the
standard product basis B � fj1i � j11i; j2i � j10i; j3i �
j01i; j4i � j00ig, using Eqs. (4), (5), and (7), we obtain the
diagonal elements
 

�T11�t� � �T11�0�P
2
t ;

�T22�t� � �T22�0�Pt � �
T
11�0�Pt�1� Pt�;

�T33�t� � �T33�0�Pt � �
T
11�0�Pt�1� Pt�;

�T44�t� � 1� ��T11�t� � �
T
22�t� � �

T
33�t�	;

(12)

and the nondiagonal elements

 �T12�t� � �T12�0�P
3=2
t ; �T13�t� � �T13�0�P

3=2
t ;

�T14�t� � �T14�0�Pt; �T23�t� � �T23�0�Pt;

�T24�t� �
�����
Pt

p
��T24�0� � �

T
13�0��1� Pt�	;

�T34�t� �
�����
Pt

p
��T34�0� � �

T
12�0��1� Pt�	;

(13)
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and �Tij�t� � �T�ji �t�, where �T�t� is a Hermitian matrix. In
order to follow the entanglement dynamics of the bipartite
system, we use Wootters concurrence [24]. This is obtained
from the density matrix �̂T for qubits A and B as C�̂T �t� �
maxf0;

������
�1

p
�

������
�2

p
�

������
�3

p
�

������
�4

p
g, where the quantities

�i are the eigenvalues of the matrix 
 ,

 
 � �̂T��Ay � �By ��̂T���Ay � �By �; (14)

arranged in decreasing order. Here �̂T� denotes the com-
plex conjugation of �̂T in the standard basis, and �y is the
well-known Pauli matrix expressed in the same basis. The
concurrence varies from C � 0 for a disentangled state to
C � 1 for a maximally entangled state.

The form of Eqs. (12) and (13) is such that one can study
the entanglement evolution for any initial state. We shall,
however, restrict our analysis to the initial entangled states

 j�i � �j01i � �j10i; j�i � �j00i � �j11i; (15)

where � is real, � � j�jei�, and �2 � j�j2 � 1. For these
two entangled states, the initial total density matrix has an
X structure [19], which is maintained during the evolution,
as is easily seen from Eqs. (12) and (13). In particular, the
concurrence, for the initial states of Eq. (15), is given by

 C��t� � maxf0; 2j�T23�t�j � 2
������������������������
�T11�t��

T
44�t�

q
g;

C��t� � maxf0; 2j�T14�t�j � 2
������������������������
�T22�t��

T
33�t�

q
g;

(16)

and using Eqs. (12) and (13) we obtain

 C��t� � maxf0; 2
���������������
1� �2

p
Pt�g;

C��t� � maxf0; 2
���������������
1� �2

p
Pt���

���������������
1� �2

p
�1� Pt�	g:

(17)

The time behavior of the concurrences C� and C� as a
function of �2 and the dimensionless quantity �0t are
plotted for Pt given by Eq. (11) in Figs. 1 and 2 (for
�=�0 � 0:1). This is a condition that can be well within

the current experimental capabilities. In fact, cavity quan-
tum electrodynamics (CQED) experimental configurat-
ions have been realized using Rydberg atoms with life-
times Tat 
 30 ms, inside Fabry-Perot cavities with qual-
ity factors Q 
 4:2 1010 corresponding to cavity life-
times Tcav 
 130 ms [25]; these values correspond to
2�=�0 
 0:2.

Figure 1 shows that, in the non-Markovian regime, the
concurrence C� periodically vanishes according to the
zeros of the function Pt, with a damping of its revival
amplitude. This behavior is evidently different from
Markovian, where in contrast C� decays exponentially
and vanishes only asymptotically [7]. The Markovian de-
cay rate is, however, larger than the initial non-Markovian
one, as shown in Fig. 3 for the maximally entangled case
�2 � 1=2.

Figure 2 shows that the entanglement represented by C�

has a similar behavior to C� for �2 � 1=2. In contrast, for
�2 < 1=2 two ranges of parameter may be distinguished.
In one there is ESD because C� vanishes permanently after
a finite time, similar to the Markovian case [4,7]. In the
second, revival of entanglement appears after periods of
times when disentanglement is complete. This behavior is
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FIG. 1 (color online). Concurrence for the initial state �j01i �
�j10i as a function of the dimensionless quantity �0t and �2, in
a realistic CQED condition (� � 0:1�0).
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FIG. 2 (color online). Concurrence for the initial state �j00i �
�j11i as a function of the dimensionless quantity �0t and �2, in
a realistic CQED condition (� � 0:1�0).
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FIG. 3. Concurrence for the initial state �j01i � j10i�=
���
2
p

as a
function of the dimensionless quantity �0t in non-Markovian
regime (solid line; � � 0:1�0) and Markovian regime (dashed
line; � � 5�0).
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more evident in the plot of Fig. 4 obtained under stronger
non-Markovian conditions. This revival phenomenon is
induced by the memory effects of the reservoirs, which
allows the two-qubit entanglement to reappear after a dark
period of time, during which the concurrence is zero. This
phenomenon of revival of entanglement after finite periods
of ‘‘entanglement death’’ appears to be linked to the
environment-single qubit non-Markovian dynamics. In
this sense this result differs from the revival of entangle-
ment previously obtained in the presence of interaction
among qubits or because of their interaction with a com-
mon reservoir [10–12]. The physical conditions examined
here are, moreover, more similar to those typically consid-
ered in quantum computation, where qubits are taken to be
independent and where qubits interact with non-Markovian
environments typical of solid state microdevices [26].

The above analysis can easily be extended to study
entanglement dynamics starting from different initial con-
ditions and to take into account finite temperature effects.
In particular, starting from a Werner state [27] one gets an
entanglement behavior structurally similar to that obtained
in this Letter for the states of Eq. (15) with ESD and
entanglement revival periods. The details of the evolution
for this case and finite temperature effects for non-
Markovian dynamics will be considered elsewhere.

In conclusion, we have presented a procedure that allows
one in principle to obtain the dynamics of a system of N
independent bodies, each locally interacting with an envi-
ronment, as long as the single system dynamics is known.
This procedure is valid for any form of single-body-
environment interaction. It has been applied to the case
of two qubits interacting with the environment where non-
Markovian effects are present. In particular, the model
described has been identified with a system made by two
atoms each in a high-Q cavity. For this case the
Hamiltonian dynamics of the single qubit can be solved
exactly and no problems about map positivity arise. We
have found that non-Markovian effects influence the en-
tanglement dynamics and may give rise to a revival of

entanglement even after complete disentanglement has
been present for finite time periods. This effect, arising
for completely independent systems, is only a consequence
of the non-Markovian behavior of the single qubit-
reservoir dynamics.

These results show that entanglement dynamics may
present facets that one simply may not expect from single
qubit dynamics and may also lead to the possibility of
recovering the entanglement initially present.
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FIG. 4. Concurrence for the initial state �j00i � �j11i as a
function of the dimensionless quantity �0t for �2 � 1=3, in
strong coupling (� � 0:01�0).
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