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We study strongly correlated ground and excited states of rotating quasi-2D Fermi gases constituted of a
small number of dipole-dipole interacting particles with dipole moments polarized perpendicular to the
plane of motion. As the number of atoms grows, the system enters an intermediate regime, where ground
states are subject to a competition between distinct bulk-edge configurations. This effect obscures their
description in terms of composite fermions and leads to the appearance of novel quasihole ground states.
In the presence of dipolar interactions, the principal Laughlin state at filling � � 1=3 exhibits a substantial
energy gap for neutral (total angular momentum conserving) excitations and is well-described as an
incompressible Fermi liquid. Instead, at lower fillings, the ground state structure favors crystalline order.
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Some of the most fascinating challenges of modern
atomic and molecular physics arguably concern ultracold
dipolar quantum gases [1]. The recent experimental real-
ization of a quantum degenerate dipolar Bose gas of
Chromium [2] and the progress in trapping and cooling
of dipolar molecules [3] have opened the path towards
ultracold quantum gases with dominant dipole interactions
[4]. Particularly interesting in this context are rotating
dipolar gases (RDG). Novel forms of vortex lattices, e.g.,
square, stripe- and bubble-‘‘crystal’’ lattices are expected
to occur in Bose-Einstein condensates of RDGs [5]. The
stability of these phases in the lowest Landau level was
recently investigated [6]. We have shown that the quasihole
gap survives the largeN limit for fermionic RDGs [7]. This
suggests that the same occurs for angular momentum con-
serving particle-hole excitations, and makes RDGs perfect
candidates to approach the strongly correlated regime and
to realize Laughlin liquids (cf. [8]) at filling � � 1=3, and
quantum Wigner crystals at � � 1=7 [9] for a mesoscopic
number of atoms N ’ 50–200. Lately, Rezayi et al. [10]
have shown that the presence of a small amount of dipole-
dipole interactions stabilizes the so-called bosonic Rezayi-
Read state at � � 3=2 whose excitations are both fractional
and non-Abelian.

In this Letter, we investigate quasi-2D microscopic and
mesoscopic clouds of fermions whose dipole moments are
polarized perpendicular to their plane of motion. Results
are obtained by exact diagonalization of the Hamiltonian
of the system for N � 3–12 particles. Such systems can be
realized with arrays of rotating microtraps, or optical lat-
tices with rotating on-site potential wells in 1D, 2D, or 3D,
or using a 1D lattice rotating around its axis. Such systems,
consisting indeed of multiple copies of small atomic clouds
that facilitate detection, are of great interest recently (see
[11] and references therein). Here, we study the lowest
Landau level (LLL) physics, in particular, the crossover
from the weakly interacting Fermi liquid regime to
strongly correlated fractional quantum Hall-like states.

As N grows, particles either organize themselves in the
bulk or crystallize on the edge. This competition is based
on interparticle correlations and exceeds the scope of the
effective theory of composite fermions [12]. It leads to the
appearance of novel ground states (GS’s) with a quasihole
at the origin which are linked to unfavored composite-
fermion states. This surprising behavior neither occurs
for Van der Waals nor for Coulomb forces with N � 10
and is the main result of this Letter. The analysis of the
principal Laughlin state at filling � � 1=3 reveals that its
low energy excitations in the angular momentum subspa-
ces where quasiholes are to be found correspond to edge
excitations rather than topological quasihole defects.
Instead, ‘‘neutral’’ particle-hole pair excitations are al-
ready substantially gapped in these microscopic systems.

We consider a system of N dipolar fermions rotating in
an axially symmetric harmonic trapping potential strongly
confined in the direction of the axis of rotation. Along this
z-axis, the dipole moments, as well as spins, are assumed to
be aligned. In case of low temperature T and weak chemi-
cal potential � with respect to the axial confinement !z,
the gas is effectively 2D, and the Hamiltonian of the system
in the rotating reference frame reads
 

H �
XN
j�1

1

2M
� ~pj �M�~ez � ~rj�

2 �
M
2
�!2

0 ��2�r2
j � Vd:

(1)

Here, !0 	 !z is the radial trap frequency, � is the
frequency of rotation, M is the mass of the particles, Vd �PN
j<k

d2

j~rj� ~rkj3
is the dipolar interaction potential (rotationally

invariant with respect to the z-axis), d is the dipole mo-
ment, and rj � xjex � yjey is the position vector of the
j-th particle. The first term of (1) is formally equivalent to
the Landau Hamiltonian of particles with mass M and
charge e moving in a constant magnetic field of strength
B � 2M�c=e perpendicular to their plane of motion. The
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eigenvectors of H Landau span Landau levels (LL) with
energies "n � @!c�n� 1=2� where !c � 2�. We denote
byNLL � 1=2�l2 the number of states per unit area in each
LL, where l �

����������������
@=M!c

p
is the magnetic length. Given a

fermionic density nf, the filling factor � � 2�l2nf refers
to the fraction of occupied LLs. Even though the above
definition applies to infinite homogeneous systems, it may
be used for finite systems using suitable truncation of the
Hilbert space at specific angular momenta. The second
term in (1) accounts for a rotationally induced effective
reduction of the trap strength. For �! !0, the confining
potential vanishes.

In the following, it is assumed that particles solely
occupy the LLL. In the LLL Hamiltonian, there are two
competing contributions to the energy: the kinetic term
given by @�!0 ���L̂z, and the interaction term, which
scales as d2=l3 � 2@!0�ad=l� with ad � Md2=@2. The
natural unit of energy is @!0, whereas distances are mea-
sured in l; from now on, we set ad=l 
 1. We analyze the
ground state interaction energy for a given Lz. It reveals
plateaus, clearly visible for small N (see Fig. 1).

Ground state candidates are the first states of these
plateaus where a downward cusp occurs in the spectrum.

By tuning the rotational frequency, some of these states
are selected as true ground states at specific ‘‘magic’’
angular momenta as depicted in Fig. 2. For relatively low
values of �, the ground state is the filled LL state at � � 1,
which is insensitive to type and strength of interaction as
long as the LLL approximation holds. When � is contin-
uously increased, the system evolves from the weakly
interacting (where the kinetic term is dominant) to strongly
correlated regime (where the interaction is dominant). In
case of short-range interactions, this process terminates at
Lz0 � ��1

0 N�N � 1�=2, where the fermionic (bosonic)
Laughlin states at filling �0 � 1=3 (1=2) become the true
ground states. The existence of a final Lz is due to the fact
that the ground state contact interaction energy vanishes
for Lz � Lz0. The long range nature of dipolar interactions

lifts this degeneracy. Thus, the whole principal series of
fillings, i.e., � � 1=�2m� 1� for fermionic gases, is acces-
sible. To reveal the internal structures of relevant states, we
consider the density-density correlation function �̂� ~r; ~r0�,
which represents the conditional probability to find one
atom at ~r when another is simultaneously located at ~r0,

 �̂� ~r; ~r0� �
XN
j<k

�� ~rj � ~r���~rk � ~r0�: (2)

It is crucial to analyze second order correlations since the
GS density only reveals radially symmetric contributions.
Figure 3 depicts �̂�~r; ~r0� for a selection of ground states
with N � 10 particles.

Generally, for small N, starting from the unstructured
maximum-density droplet at Lz � N�N � 1�=2 (top left)
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FIG. 1 (color online). Interaction contribution to the GS en-
ergy as a function of Lz.
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FIG. 2 (color online). Ground state angular momentum series
over � 
 !0 �� (the divergence at � � 0 is not shown).
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FIG. 3 (color online). Ground state density-density correlation
functions �̂�~r; ~r0� for N � 10 dipolar fermions at Lz � 45, 80
(top); 90, 93 (centered); 103, 117 (bottom) with ~r0 set to the
maximum of the density, which occurs at the edge.
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with � � 1, a fraction of atoms starts to arrange itself in a
crystal on the edge leaving a residual ‘‘Fermi sea’’ at the
center (top right), until the correlations are homogeneously
established at Lz0 � 3N�N � 1�=2. For larger N, however,
the energetically favorable number of edge atoms in the
crystal changes irregularly with Lz (right column); the
system seems to be frustrated in this respect. In this regime,
the bulk has to reorganize itself accordingly, and novel
fascinating states with a hole at the center of the bulk
appear (centered and bottom left).

In order to understand the magic Lz numbers, Jain et al.
[12] have proposed to model the interacting system in
terms of an effective theory of noninteracting composite
fermions (CF) for electrons in a quantum dot. In this
ansatz, each fermion captures an even number of quantum
fluxes, and the wave function reads

 �CF�fzjg� �N P̂ LLL

�YN
j<k

�zj � zk�
2m�Landau

�
: (3)

Here, m denotes the number of flux pairs, �Landau is an
N-particle eigenfunction of H Landau, and P̂ LLL is the LLL
projector. Cooper and Wilkin have nicely adapted this
scheme to bosonic contact interacting gases [13].

Following this idea, we compared the series of true GS
for noninteracting composites and dipolar fermions. As
long as there is no real bulk in the system, i.e., for N <
7, the ground state series nearly identically matches with
the predictions of the effective CF theory. Furthermore,
overlap calculations for electrons and short-range interact-
ing bosons [12,13] suggest that similar results will hold for
dipolar fermions. However, for bigger N, deviations from
CF theory, in particular, in the intermediate regime, occur
[see, for instance, the magic numbers for CF GS’s, and true
magic numbers for exact GS’s in Table ()]. This deficiency
of the CF theory, already commented on in Ref. [13], is
more clearly related to the frustration effect and reorgan-
ization of the bulk in the present case. For N � 10, ground
states with a density defect at the center are found at Lz �
90, 95, and 103. They either have no CF counterpart (Lz �
95), or are hardly similar to the corresponding CF states.
Instead, the analysis for the accessible range of systems
strongly suggests that these states originate from parent
states which are boosted by N quanta of angular momen-
tum, e.g., Lz � 80, 85, and 93 for the above series. None of
these parent states has its magic analogues in the CF
model.

 

To a good approximation, the close connection between
parent and boosted state (e.g., L � 93 and 103) can be
understood as a quasihole (QH) excitation. This is analyti-
cally represented by

 �qh�fzjg� �N

�YN
j�1

�zj � zc:m:�
m�Lz

�
; (5)

where zc:m: � �
PN
j�1 zj�=N and m � 1. Indeed, the above

wave function proves to be a good approximation for the
states with Lz � Lzparent � N. The states (5), similarly as
the exact GS’s, reveal a ‘‘smoothed’’ topological defect at
the origin due to finite size. The density of the exact GS’s at
the origin scales as 1=N and decreases from 0.14 to ’ 0:10
as N varies from 7 to 11, while their overlaps with the
states (5) grow from 0.6 to 0.7 despite the significant
increase of the relevant Hilbert space dimension [14].

We have also studied in detail low energy excitations of
the dipolar Laughlin state at � � 1=3, which for N � 10
consists of a significant bulk, surrounded by a practically
‘‘melted crystal’’ at the edge (see Fig. 4).

In order to relate our results to the ones obtained in the
thermodynamical limit in Ref. [7], it is necessary to iden-
tify the finite-size analogues of QH excitations in the
spectrum. To map out irrelevant candidates, it is reasonable
to appropriately truncate the Hilbert space by a finite-size
filling factor. We use the approach of Ref. [15], and fix � by
imposing the constraint m� � �N � 1�=� on the maximum
single particle angular momentum in the N-particle Fock

basis. If the rotational frequency � is tuned to favor �L
1=3

as the true ground state, the lower lying excitations for
LL1=3 < Lz < LL1=3 � N turn out to be gapped by �� ’ 1=N.
For short-range interacting bosonic systems, these states
have been partially identified as edge excitations that carry
quanta of angular momentum [16]. To identify the excited
states with a quasihole at the center, the ground states at
Lzqh � LL1=3 � N are considered. These states closely fol-
low the lowest energy branch of edge excitations, and
should be regarded as such, rather than as QH states.
This is strongly supported by the fact that the substantial
density dip for N � 3 continuously vanishes for increasing
N. Additional information about these edge excitations can
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FIG. 4 (color online). Density-density correlation function
�̂�~r; ~r0� of the Laughlin state for N � 12 dipolar fermions
with ~r0 chosen at the maximum of the density, which occurs at
the edge.
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be obtained by a direct qualitative inspection of Fig. 4. For
the Laughlin state, edge excitations are described by a
Luttinger liquid theory [17], and their amplitude decays
as sin�3���, where � is the angular distance from ~r0

measured along the edge. Here, the decay is much slower,
due to finite-size effects.

The above considerations imply that the only reliable
quantity that remains to estimate the QH energy in the
large N limit is the neutral gap at fixed Lz. This gap
remains more or less constant for smaller N, and gradually
increases as the number of bulk particles in the system and
N grows. For the data of Ref. [7] (M � 30 a.m.u., d �
0:5 D, and a trap frequency of 2�� 103 Hz), the gap is of
the order of percents of 2@!0, i.e., it is substantial, but
several times smaller than the large N value estimated in
[7] in the large N limit. Obviously, the lack of true bulk
behavior in the investigated mesoscopic samples is respon-
sible for this effect.

In the semiconductor fractional quantum Hall effect,
Wigner crystals, i.e., specific charge-density waves, were
discussed as competing ground states to Laughlin liquids.
The interplay of quantum fluctuations with the interaction
energy have proven crystalline Wigner order to be favor-
able for low enough fillings for electrons. This behavior
intuitively changes in the case of dipolar particles as the
interaction energy scales differently in the density of the
particles. A very recent detailed analysis of this issue has
confirmed the stability estimates for Laughlin and Wigner
states of Ref. [7] for systems constituted of 50–200 parti-
cles [9]. Fehrmann et al. have proven that phonon excita-
tions destabilize the Wigner crystal for fillings � > 1=7,
which melts into a Laughlin liquid. In the microsystems
discussed in this Letter, this crossover is strongly sup-
ported. For fillings � � 1=5, density profiles significantly
deviate from the Laughlin state and show clear signatures
of crystalline order for N � 6 (see Fig. 5).

Summarizing, we have studied in detail ground and
excited states of quasi-2D ultracold rotating dipolar
Fermi gases. By exact diagonalization methods, we studied
systems up to 12 particles. We have identified novel kinds
of strongly correlated states in the intermediate regime,
i.e., ‘‘boosted’’ quasihole GS’s, which appear alternatively
as � grows. Calculation of the substantial gap in the
excitation spectrum of the dipolar Laughlin state at � �
1=3 prove its accessibility in these microsystems. At lower
fillings, interactions favor crystalline order. Rotating dipo-
lar gases are thus very suitable candidates to realize
Laughlin-like and more exotic quantum liquids, as well
as their crossover behavior to Wigner crystals.
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FIG. 5 (color online). Radial density ��r� of Laughlin states
(circles) and true dipolar ground states (triangles) for N � 6 at
different filling factors. Apart from five particles which consti-
tute the edge ring, localization of the sixth particle at the origin is
clearly visible for � � 1=5.
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