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We investigate the topological phase associated with the double connectedness of the SO�3� repre-
sentation in terms of maximally entangled states. An experimental demonstration is provided in the
context of polarization and spatial mode transformations of a laser beam carrying orbital angular
momentum. The topological phase is evidenced through interferometric measurements, and a quantitative
relationship between the concurrence and the fringes visibility is derived. Both the quantum and the
classical regimes were investigated.
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The seminal work by Pancharatnam [1] introduced the
notion of the geometric phase associated with cyclic po-
larization transformations. A quantum mechanical parallel
for this phase was later provided by Berry [2]. Recently, the
interest for geometric phases was renewed by their poten-
tial applications to quantum computation. The experimen-
tal demonstration of a conditional phase gate was recently
provided in both nuclear magnetic resonance [3] and
trapped ions [4]. Another optical manifestation of geomet-
ric phase is the one acquired by cyclic spatial mode con-
versions of optical vortices. This kind of geometric phase
was first proposed by van Enk [5] and recently found in a
beautiful demonstration by Galvez et al. [6].

Pure states of a single qubit can be represented on the
surface of the Bloch sphere for spin 1=2 particles or the
Poincaré sphere for polarization states. A Poincaré sphere
representation can also be constructed for first order spatial
modes of an optical beam [7]. Therefore, in the quantum
domain, we can attribute two qubits to a single photon, one
related to its polarization state and another one to its spatial
structure. Geometrical phases of a single qubit can be
interpreted in such representations as being related to the
solid angle of a closed trajectory. However, in order to
compute the total phase gained in a cyclic evolution, one
should also consider the dynamical phase. When added to
the geometrical phase, it leads to a total phase gain of �
after a cyclic trajectory. This phase has been put into
evidence for the first time using neutron interference [8].
The appearance of this � phase is due to the double
connectedness of the three dimensional rotation group
SO�3�. However, in the neutron experience, only two di-
mensional rotations were used, and this topological prop-
erty of SO�3� was not unambiguously put into evidence, as
explained in details in [9,10].

As discussed by Milman and Mosseri [9,10], it is pos-
sible to put into evidence this topological property of
SO�3� using maximally entangled states (MES). It was
shown in [11] that MES are in bi-univocal correspondence
with SO�3�, so one can associate one MES to each point of

the space of three dimensional rotations. In this way, MES
are solely represented on the volume of the SO�3� sphere
that has radius � and its diametrically opposite points
identified. This construction reveals two kinds of cyclic
evolutions, each one mapped to a different homotopy class
of closed trajectories in the SO�3� sphere. One kind is
mapped to closed trajectories that do not cross the surface
of the sphere (0-type) and the other one is mapped to
trajectories that cross the surface (�-type). The phase
acquired by a maximally entangled state is 0 for the first
kind and � for the second one. Notice that for MES
evolving under local unitary transformations, the dynami-
cal and geometrical phases can be calculated, and they
provide null contribution to the global phase. Total phase
is purely of topological origin. For pure non-MES,
Ref. [11] also proposes a geometrical representation based
on the combination of the SO�3� sphere and a single qubit
Bloch sphere, obtained after the second qubit is traced out.
Using this representation, Ref. [10] shows that the phase
acquired through a cyclic evolution has a more complex
structure and can be separated in three contributions: dy-
namical, geometrical, and topological, which add up to a
total value of � or 0. The naive sum of independent phases,
one for each qubit, is applicable only for product states,
and the parallel between the cyclic phase and the topologi-
cal properties of SO�3� is not direct. In this case, the two
qubits are geometrically represented by two independent
Bloch spheres.

In the present work we demonstrate the topological
phase associated with polarization and spatial mode trans-
formations of an optical vortice. This is the first experiment
unambiguously showing the double connectedness of the
rotation group SO�3�. The optical modes used in our
experiment have a mathematical structure analog to the
one of entangled states, so that the geometrical representa-
tion developed in [11] also applies and the results of
Refs. [9,10] can be experimentally demonstrated. We in-
vestigate the analogs of both a MES and a non-MES, and
provide an interference based criterium to determine the
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mode separability. This criterium constitutes a strong evi-
dence of the topological nature of the phase acquired in a
cyclic evolution. Finally, we briefly discuss the transition
of our results to the quantum regime.

Let us now combine the spin and orbital degrees of
freedom in the framework of the classical theory in order
to build the same geometric representation applicable to a
two-qubit quantum state. Consider a general first order
spatial mode with arbitrary polarization state:

 E �r� � � ��r�êH � � ��r�êV � � ��r�êH

� � ��r�êV; (1)

where êH�V� are two linear polarization unit vectors along
two orthogonal directions H and V, and  ��r� are the
normalized first order Laguerre-Gaussian profiles that are
orthogonal solutions of the paraxial wave equation [12].
We may now define two classes of spatial-polarization
modes: the separable (S) and the nonseparable (NS) ones.
The S modes are of the form

 E �r� � ��� ��r� � �� ��r����HêH � �V êV�: (2)

For these modes, a single polarization state can be attrib-
uted to the whole wave front of the paraxial beam. They
play the role of separable two-qubit quantum states.

For nonseparable (NS) paraxial modes, the polarization
state varies across the wave front. As for entanglement in
two-qubit quantum states, the separability of a paraxial
mode can be quantified by the analogous definition of
concurrence. For the spin-orbit mode described by
Eq. (1), it is given by

 C � 2 j ��� �� j : (3)

Let us first consider the maximally nonseparable modes
(MNS) of the form

 E �r� � � ��r�êH � � ��r�êV � �	 ��r�êH

� �	 ��r�êV: (4)

For these modes C � 1. It is important to mention that the
concept of entanglement does not apply to the MNS mode,
since the object described by Eq. (4) is not a quantum state,
but a classical amplitude. However, we can build an SO�3�
representation of the MNS modes as it was done in
Refs. [10,13]. Let us define the following normalized
MNS modes:
 

E1�r� �
1
���
2
p � ��r�êH �  ��r�êV�;

E2�r� �
�i
���
2
p � ��r�êH �  ��r�êV�;

E3�r� �
�i
���
2
p � ��r�êV �  ��r�êH�;

E4�r� �
1
���
2
p � ��r�êV �  ��r�êH�:

(5)

Each point in the volume of the SO�3� sphere corre-
sponds to a MNS mode and points diametrically opposite
are identified, which means that they correspond to the
same mode. In Ref. [13] the reader will find a detailed
description of the parametrization in the SO�3� sphere. The
four modes described by Eqs. (5) are represented in the
following way: mode E1 is represented by the center of the
sphere, while modes E2, E3, and E4 are represented by
three points on the surface, connected to the center by three
mutually orthogonal segments, as described in Fig. 1.

In order to evidence the topological phase for cyclic
transformations, we must follow two different closed
paths, each one belonging to a different homotopy class,
and compare their phases. The experimental setup is
sketched in Fig. 2. First, a linearly polarized TEM00 laser
mode is diffracted on a forked grating used to generate
Laguerre-Gaussian beams [14]. The two side orders carry-
ing the  ��r� and  ��r� spatial modes are transmitted
through half wave plates HWP-A and HWP-B, followed
by two orthogonal polarizers Pol-V and Pol-H, and finally
recombined at a beam splitter (BS-1). Half wave plates
HWP-A and HWP-B are oriented so that their fast axes are
parallel. This allows us to adjust the mode separability at
the output of BS-1 without changing the corresponding
output power, which prevents normalization issues.

Experimentally, a MNS mode is produced when both
HWP-A and HWP-B are oriented at 22.5
, so that the setup
prepares mode E1 located at the center of the sphere. Other
MNS modes can then be obtained by unitary transforma-
tions in only 1 degree of freedom. Since polarization is far
easier to operate than spatial modes, we choose to imple-
ment the cyclic transformations in the SO�3� sphere using
wave plates. The MNS mode E1 is first transmitted through
three wave plates. The first one (HWP-1) is oriented at 0


and makes the transformation E1 ! E2, the second one
(HWP-2) is oriented at�45
 and makes the transformation
E2 ! E3, and the third one (HWP-3) is oriented at 90
 and
makes the transformation E3 ! E4. All these transforma-
tions are represented by the solid lines in the diagram of
Fig. 1.

1

2

3

4

4

FIG. 1. Diagram representing the transformations performed
in the SO�3� sphere.
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Finally, two alternative closures of the path are per-
formed in a Michelson interferometer. In one arm a
�-type closure is implemented by a double passage
through a quarter-wave plate (QWP-1) fixed at �45
.
This is our fixed phase reference, and the corresponding
closure is described by the dashed line connecting point 40

to point 1 of Fig. 1. In the other arm, either a 0-type (4!
1) or a �-type (40 ! 1) closure is performed by a double
passage through another quarter-wave plate (QWP-2) ori-
ented at a variable angle between �45
 (�-type) and 45


(0-type). These trajectories are analogous to spin rotations
around different directions of space [13]. They evidence
the topological properties of the three dimensional rotation
group. The closed path used in the experiment is the one
requiring the minimum number of wave plates and allow-
ing the most compact interferometer, so that we could
obtain stable interference fringes. We shall leave to a future
work a presentation of more complicated trajectories and
an extension of the phase shift to statistical mixtures.

In order to provide spatial interference fringes, the in-
terferometer was slightly misaligned. The interference
patterns were registered with either a charge coupled de-
vice (CCD) camera or a photocounter (PC), depending on
the working power.

First, we registered the interference patterns obtained
when an intense beam is sent through the apparatus. The
images shown in Fig. 3(a) demonstrate clearly the � topo-
logical phase shift. The phase singularity characteristic of
Laguerre-Gaussian beams can easily be identified in the
images and is very useful to evidence the phase shift. When
both arms perform the same kind of trajectory in the SO�3�
sphere (QWP-1 and QWP-2 oriented at �45
), a bright
fringe falls on the phase singularity. When QWP-2 is
oriented at 45
, the trajectory performed in each arm

belongs to a different homotopy class and a dark fringe
falls on the singularity, which clearly demonstrates the �
topological phase shift.

Usually, in formal derivations of geometrical and topo-
logical phases, a nice expression of the state evolution is
presented where factorized phase terms appear, each one
attributed to a different nature. Experimentally, we must
conceive a setup in which all phase contributions vanish
except the one we are interested in. The topological nature
of the phase factor presented in Ref. [9] is related to the
state nonseparability. Once the mode sent through the
apparatus is nonseparable, a topological phase is observed.
When QWP-2 is rotated from �45
 to 45
, the interfer-
ence fringes are deformed and finally return to their initial
topology with the � phase shift. This is clearly illustrated
by the intermediate image displayed in Fig. 3(a), which
corresponds to QWP-2 oriented at 0
 [open trajectory in
the SO�3� sphere]. Notice that, despite the deformation, the
interference fringes display high visibility. We shall see
shortly that the mode separability is related to the fringes
visibility.

As we mentioned above, the mode preparation settings
can be adjusted in order to provide a separable mode. For
example, when we set HWP-A and B both at 45
, the
output of BS-1 is the separable mode  ��r�êH. The same
� phase shift can be observed when QWP-2 is rotated, but
the transition is essentially different. The interference pat-
tern is not topologically deformed, but its visibility de-
creases until it completely vanishes at 0
, and then
reappears with the � phase shift. This transition is clearly
illustrated by the three patterns displayed in Fig. 3(b). In
this case, the � phase shift is of purely geometric nature,
since the spatial mode is kept fixed while the polarization
mode is turned around the equator of the corresponding
Poincaré sphere.

The relationship between mode separability and fringes
visibility can be clarified by a straightforward calculation
of the interference pattern. Let us consider that HWP-A
and B are oriented so that the output of BS-1 is described

FIG. 3. Interference patterns for (a-) a maximally nonsepar-
able, and (b-) a separable mode. From left to right the images
were obtained with QWP-2 oriented at �45
, 0
, and 45
,
respectively.
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FIG. 2. Experimental setup.
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by

 E ��r� �
���
�
p
 ��r�êH �

������������
1� �
p

 ��r�êV; (6)

where � is the fraction of the  ��r�êH mode in the output
power. Now, suppose that QWP-2 oriented at 0
 and that
the two arms of the Michelson interferometer are slightly
misaligned, so that the wave vectors difference between the
two outputs is �k � �kx̂, orthogonal to the propagation
axis. Taking into account the passage through the three half
wave plates, and the transformation performed in each arm
of the Michelson interferometer, we arrive at the following
expression for the interference pattern:

 I�r� � 2j �r�j2�1� 2
������������������
��1� ��

p
sin2� sin��kx��; (7)

where � � arg�x� iy� is the angular coordinate in the
transverse plane of the laser beam, and j �r�j2 is the
doughnut profile of the intensity distribution of a
Laguerre-Gaussian beam. It is clear from Eq. (7) that the
visibility of the interference pattern is 2

������������������
��1� ��

p
, which

is precisely the concurrence of E��r� as given by Eq. (3).
Therefore, the fringes visibility is related to the separabil-
ity of the mode sent through the setup. However, the
numerical coincidence with the concurrence is restricted
to modes of the form given by Eq. (6). In fact, it is
important to stress that the fringes visibility cannot be
regarded as a measure of the concurrence for any non-
separable mode, but for our purposes it evidences the
topological nature of the phase shift implemented by the
experimental setup. A detailed discussion on the measure-
ment of the concurrence is available in Ref. [15].

We now briefly discuss the quantum domain. When a
partially nonseparable mode like E��r� is occupied by a
single photon, this leads to a partially nonseparable single
particle quantum state of the kind

 j’�i �
���
�
p
j �Hi �

������������
1� �
p

j � Vi: (8)

Experimentally, we attenuated the laser beam down to the
single photon regime, and scanned a photocounting mod-
ule across the interference pattern. First, HWP-A and B
were set at 22.5
 (� � 1=2) in order to evidence the
topological phase in this regime. The � phase shift could
be clearly observed in this regime as well. The relationship
between the fringes visibility and the state separability was
evidenced by fixing QWP-2 at 0
 and rotating HWP-A and
B by an angle � so that � � cos22�. Figure 4 shows the
experimental results for the fringes visibility for several
values of �. The solid line corresponds to the analytical
expression of the concurrence, showing a very good agree-
ment with the experimental values.

As a conclusion, we demonstrated the double connected
nature of the SO�3� rotation group and the topological
phase acquired by a laser beam passing through a cycle
of spin-orbit transformations. Such an effect was also
observed using spins manipulated by magnetic fields
[16]. We investigated both the classical and the quantum
regimes and compared the separability of the mode trav-
eling through the apparatus with the visibility of the inter-
ference fringes. Our results may constitute a useful tool for
quantum computing and quantum information protocols.
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