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We investigate theoretically the violations of Einstein and Onsager relations and the thermodynamic
efficiency for a single processive motor operating far from equilibrium using an extension of the two-state
model introduced by Kafri ef al. [Biophys. J. 86, 3373 (2004)]. With the aid of the Fluctuation Theorem,
we analyze the general features of these violations and this efficiency and link them to mechanochemical
couplings of motors. In particular, an analysis of the experimental data of kinesin using our framework
leads to interesting predictions that may serve as a guide for future experiments.
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Motor proteins are nanomachines that convert chemical
energy into mechanical work and motion [1]. Important
examples include kinesin, myosin, and RNA polymerase.
Despite a number of theoretical models [2—6], understand-
ing the mechanochemical transduction mechanisms behind
these motors remains a significant challenge [7]. Recent
advances in experimental techniques [8,9] to probe the
fluctuations of single motors provide ways to gain insight
into their kinetic pathways [10]. However, a general de-
scription for fluctuations of systems driven out of equilib-
rium, and, in particular, of motors, is still lacking. Re-
cently, the Fluctuation Theorem (FT) [11-13] has emerged
as a promising framework to characterize fluctuations in
far-from-equilibrium regimes where Einstein and Onsager
relations no longer hold [12]. In a nutshell, FT states that
the probability distribution for the entropy production rate
obeys a symmetry relation, and it has been verified in a
number of beautiful experiments on biopolymers and col-
loidal systems [14]. In this Letter, we demonstrate that FT
provides a natural framework in which thermodynamic
constraints can be imposed on the operation of nanoma-
chines far from equilibrium.

Specifically, we study a generalization of the two-state
model of motors introduced in Ref. [5]. Although similar
models have been investigated with known exact results
[4,5], we reformulate the model to include an important
variable, namely, the number of adenosine triphosphate
(ATP) consumed, and construct a thermodynamic frame-
work. Our framework allows us to characterize the ATP
consumption rate of a motor, its run length, and its ther-
modynamic efficiency. Additionally, we show that our
model obeys FT [13]. While there have been a few recent
studies proving FT for motors [15—17], we further inves-
tigate the physical implications of FT here. In particular,
we quantify the violations of Einstein and Onsager rela-
tions, respectively, by four temperaturelike parameters, T,
and by the difference of the mechanochemical coupling
coefficients, AA, and we explore the behaviors of T;; and
A\, as well as the motor efficiency, as functions of gener-
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alized forces with the aid of FT. Our main results are (i) one
of the Einstein relations holds near stalling, (ii) the degree
by which the Onsager symmetry is broken (AX # 0) is
largely determined by the underlying asymmetry of the
substrate, (iii) only two ‘“‘effective” temperatures charac-
terize the fluctuations of tightly coupled motors, and
(iv) kinesin’s maximum efficiency and its maximum vio-
lation of Onsager symmetry occur roughly at the same
energy scale, corresponding to that of an ATP hydrolysis
(~20kgT).

As a result of conformational changes powered by hy-
drolysis of ATP, a linear processive motor, like kinesin,
moves along a one-dimensional substrate (microtubules).
Its state may be characterized by two variables: its position
and the number of ATP consumed. To model its dynamics,
we consider a linear discrete lattice, where the motor
“hops” from one site to neighboring sites, either consum-
ing or producing ATP (see Fig. 1). The position is denoted
by x = nd, where 2d = 8 nm is the step size for kinesin.
The even sites (denoted by a) are the low-energy state of
the motor, whereas the odd sites (denoted by b) are its
high-energy state; their energy difference is AE = kpTe,
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FIG. 1. A schematic of the rates of the two-state model for a
molecular motor moving on a linear lattice with y number of
ATP consumed. The even and odd sites are denoted by a and b,
respectively. In the case of two-headed kinesin, site a represents
a state where both heads are bound to the filament, whereas site b
represents a state with only one head bound.
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where kp is the Boltzmann constant and 7 is the
temperature.

Because of the periodicity of the filament, all the even
(a) sites and all the odd (b) sites are equivalent. The
dynamics are governed by a master equation for the proba-
bility, P;(n, y, t), that the motor, at time #, has consumed y
units of ATP and is at site i (=a, b) with position n:

0,Pi(n,y, 1) = _(Ei + Bi)Pi(nr V. 1)
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with i # j, where 5]» = Z,Ej and 5]- = z,aﬁ. Denoted
by ‘a_)§- and zﬁ are the transition probability per unit time for
the motor, with /(= —1, 0, 1) ATP molecules consumed, to
jump from site j to a neighboring site to the left or to the
right, respectively.

The transition rates can be constructed by considering
the kinetics of the transitions between the two states M,
and M|, of the motor [3]. We assume two different chemical
pathways: (o) M, + ATP=M, + ADP+ P, (B) M, =
M,;,. The « pathway represents the transition of the motor
accompanied by ATP hydrolysis, and the 8 pathway rep-
resents the transition driven by thermal activation. It is
straightforward to generalize the model with more chemi-
cal pathways, but here we focus only on these two, for
which w, = w,' = @, = w, = 0. Following Ref. [4],
the transition rates in the presence of an external force F,
are changed according to w'(F,) = @.(0)e~%/ and
wi(F,) = 01(0)e*¥ !, where f = F,d/(kyT) and 6> are
the load distribution factors [4]. These load distribution
factors take into account that the external force may not
distribute uniformly among different transitions. After one
period, the work done by F, on the motor is —F,2d,
implying that 6; + 6, + 6, + 6; =2 [4]. Thus, we
may write the nonzero rates as

4—71 _n— 4—0 _n—r

w, =ae %/ w, = we %/,
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where a and o’ and w and o' are the bare rates for the two
distinct transitions for the pathways and Ajg = kzTApu is
the chemical potential difference [3]. The underlying
asymmetry of the substrate dictates that & # «' and w #
w' as required for directional motion [5].

We find that the rates in Eq. (2) satisfy four generalized
detailed balance conditions:

— —1peq _ 1 peq (0, +0)f—Aul
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for 1=0, 1, where Pl=1/(1+¢€) and P)'=
e €/(1 4+ e €) are the equilibrium probabilities corre-
sponding to f = 0 and Ax = 0. We note that these rela-
tions, Eqs. (3) and (4), while valid arbitrary far from
equilibrium, still refer to the equilibrium state via the
probabilities P;?. We show below that these relations
lead to a FT [13]. Introducing the generating functions,
Fi(z1,20,1) =3, Y, e 9" 2YPy(n, y, ), whose time evo-
lution is governed by 9,F; = M,;F;, where M([z,, z,]is a
2 X 2 matrix that can be obtained from Eq. (1), we find
(e7anm2Y)y = N Fi(zy, zp, 1) ~ exp(d1), for t — oo, where
¥ = 9z, zo] is the largest eigenvalue of M. Using
Egs. (3) and (4), it can be shown that M and M1 are
related by a similarity transformation: M1[f — z,, Au —
] = 9QM[z,2,]9 ", where MT is the adjoint of M
and Q is a diagonal matrix. This similarity relation implies
that

Nz, 22] = Of — 21, A — 22, (5)

which is one form of FT.

Now, we proceed to discuss the physical consequences
of FT. The eigenvalue, 1, contains all the steady-state
properties of the motor. In particular, the average (normal-
ized) velocity, ¥ = v/d, and the average ATP consumption
rate, r, are, by definition, given by & = —a, 90, 0] and
r = —a.,9[0,0], respectively [18]. From the conditions
v = Oand r = 0, we can construct a full operation diagram
of a motor, as shown in Fig. 2 for the case of kinesin. The
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FIG. 2. Four modes of operation of a molecular motor, as
delimited by ¥ =0 and r =0 [2]. The lines are generated
with parameters that we have extracted from fitting the data
for kinesin in Ref. [8] to our model. (The best-fit values for the
parameters are listed at the end of the text.) In Region A, where
rAu > 0and fo < 0, the motor uses chemical energy of ATP to
perform mechanical work. In Region B, where rAu <0 and
f0 >0, the motor produces ATP from mechanical work. In
Region C, where rAu > 0 and f9 < 0, the motor uses adenosine
diphosphate to perform mechanical work. In Region D, where
rAu <0 and f9 >0, the motor produces adenosine diphos-
phate from mechanical work.
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curves ® = 0 and r = 0 define implicitly f = f,(Au) (the
stalling force) and Au = Apug(f), respectively. It is inter-
esting to note that the large asymmetry between regions A
and C in Fig. 2 reflects the fact that kinesin is a unidirec-
tional motor.

The response and fluctuations of a motor are quantified,
respectively, by a response matrix A;; and by a diffusion
matrix 2D;; = 9z;0z,;9[0, 0]. The physical meanings of A;;
are: A;; = 90/df is the mobility, Ay, = dr/dAu is the
chemical admittance, and more importantly, A, =
00/0Au and Ay, = dr/df are the Onsager coefficients
that quantify the mechanochemical couplings of the motor.
Differentiating Eq. (5), we can write

o= —a, 90,0] = 0, 9f, Al
~a,,910,0] = 0, 9[f, u)

Near equilibrium, where f and Au are small, a Taylor
expansion of Eq. (6) leads to & = AJ,f + A%, Ap and r =
A f + A% Aw, with AY; = 9.9, 90, 0] = D;;, which are
the Einstein relations, and A9, =4 4, 90,0]=
9,0, 90, 0] = AY,, which is the Onsager relation. Thus,
FT captures the response and fluctuations near equilibrium
[12,17].

Away from equilibrium, we expect that Onsager and
Einstein relations are no longer valid. To quantify their
violations, we introduce AA = A, — A,; and four
“temperature”’-like quantities, T;; = D,;/A;;. Of course,
these effective temperatures are not thermodynamic tem-
peratures: they are merely one of the ways to quantify de-
viations of Einstein relations. Via FT, we obtain the fol-
lowing general characterizations for these quantities.
First, at sufficiently small driving, we find 2AA=
(0puth1 — 0D f +(0a, o — 9p02)Ap, where 9;; =
0z;0z;9f/2, An/2]. In particular, for f <1, AA
A p. Thus, active processes in the mechanochemical trans-
duction mechanism break Onsager symmetry and these
processes can be studied via AA. Secondly, along
?(f, An) = 0, we find that Eq. (4) has a special relation:
Hzp, 0] = 9[6f — 2,0, where of = f— fu(Ap).
Therefore, one of the Einstein relations, A;; = D, holds
near stalling, since FT implies that 20 = 92 9{0, 0]6f for
small 6f. Note that this particular Einstein relation also
holds for ratchet models under similar conditions [19]. By
the same token, near r = 0, FT implies that an Einstein
relation holds for y, i.e., Dy = Ay).

For our two-state model, we can fully investigate the
behaviors of AA and T;;. Let us focus on Region A of Fig. 2
and —f < 1, so that A;; and T;; depend only on Awu. In
Fig. 3(a), we display AA and the three distinct 7;; (see
below) as a function of A . We observe that for small A w,
A\ rises linearly with Au, in agreement with the FT
prediction, and that for larger Au, A\ exhibits a maxi-
mum. Moreover, for large A u, we find that A A approaches
to a constant value. The latter observation can be under-
stood from a simple argument. When Au >> 1, the tran-
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FIG. 3. (a) Plots of T,; (dot-dashed), 7T,; (dotted), T,

(dashed), and AA (solid) vs Au in Region A of Fig. 2 with
small f. T;; characterize the fluctuation-response ratios (see
text), and AA quantifies the breaking of Onsager symmetry.
(b) Local maximum of the efficiency 7,, vs Au. Note that 7,,
is substantially larger than %y, (the dotted line). Note also that
the absolute maximum, which occurs at about Ay = 15, roughly
corresponds also to the maximum of AA. Inset: Efficiency vs
normalized force for Ay = 15. The parameters used in both (a)
and (b) are the same as those used to generate Fig. 2.

sitions between the states a and b of the motor are limited
by the 8 pathways. Therefore, we can write r =~ we %/ +
w'e? ', which implies that for small f, A = b, —
w'0), since Ay = 0 for large Au. Thus, the underlying
asymmetry of the substrate determines the degree by which
the Onsager symmetry is broken.

In Region A and — f < 1, the T;; also exhibit interesting
behaviors. First, we note that the run length €—the dis-
tance moved per ATP hydrolyzed—is independent of A w:
£ =v/r =2dlaw — dw)/[(a + o) + o')] < 2d.
With the help of FT, we find that T}, = T, for any Apu.
Therefore, there are only three effective temperatures in-
stead of four, as one might naturally suppose. As shown in
Fig. 3(a), we observe that all distinct T; start off at 7;; = 1
near equilibrium, as expected, and for large Aw, Th ~
eA# diverges exponentially, whereas T, and T}, approach
finite values. Secondly, for tightly coupled motors,
€/(2d) ~ 1, we find that T}, is nearly identical to T,
[see Fig. 3(a)]. Therefore, in this case, only two effective
temperatures characterize motors’ fluctuations.

In addition, our framework allows us to investigate the
thermodynamic efficiency, an important quantity that also
characterizes the working of a motor [20]. In Region A, it is
defined as the ratio of the work performed to the chemical
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FIG. 4. Kinesin velocity vs ATP concentration under an exter-
nal force. The solid curves are the fits of our model to data from
Ref. [8]. From the top down, the plots are for F, = —1.05,
—3.59, and —5.63 pN, respectively. Inset: Kinesin velocity vs
force under a fixed ATP concentration. The solid curves are fits
to the data of Ref. [8]. From the top down, the plots are for
[ATP] =2 mM and 5 uM, respectively.

energy input: n = —f9/(rAu) [2]. By definition, 5 van-
ishes at f = 0 and at the stalling force f. Therefore, it has
a local maximum 7,,(Aw) for some f,,(Auw) between
fo <fm <0 [see Fig. 3(b) inset]. Near equilibrium,
N,(Ap) has a constant value, 7,,/, along a straight line
fm(Aw) o Au inside Region A [2]. Far from equilibrium,
we find that 7,, has an absolute maximum at some Ay >
1, and 7,, is substantially larger than 7,/ as shown in
Fig. 3(b). Hence, a motor achieves a higher efficiency in
the far-from-equilibrium regimes [3].

Finally, to discuss the relevance of our framework to
kinesin, we carried out a global fit of kinesin velocity data
of Ref. [8] to our model at different external forces and two
curves of force vs velocity at different ATP concentrations
(see Fig. 4). Assuming that e*# = k,[ATP], we obtain the
best-fit values for the parameters: € = 10.81, ky = 1.4 X
10° uM™, @a=057s"!, &/ =13X10°%s"", w=
3557 o' =108.15s71, 0F =0.25, 6, = 1.83, ) =
0.08, and 8,7 = —0.16. These values are reasonable within
the accepted biophysical picture of kinesin [1]. First, € and
ky! represent the typical binding energy (~10kzT) of
kinesin with microtubules and the ATP concentration at
equilibrium (~107°uM), respectively. Secondly, 6, =
1.83 indicates that the back-steps (transitions a — b) of
kinesin contain most of the displacement sensitivity [1].
Moreover, our framework allows us to estimate a maxi-
mum stalling force of —7 pN, and more importantly, a run
length of € =~ 0.97(2d) and a global ATP consumption rate
of r=111s"!, all in excellent agreement with known
values [1]. Using the above parameters, we constructed
the diagram of operation for kinesin (Fig. 2), we made
predictions about AA and 7;; [Fig. 3(a)], and we obtained
the efficiency for kinesin [Fig. 3(b)]. In particular, we find

that T}, ~ 10T, the maximum value of AA ~ 45 pN~—!s™1,
and AA~ —10pN~'s™! at large Au. Under typical
physiological conditions (A & ~ 10-25kzT), kinesin oper-
ates at an efficiency in the range of 40-60%, also in
agreement with experiments [1]. Lastly, we point out a
remarkable feature: the absolute maximum of 7,, occurs
approximately at a Ay at which A is also a maximum,
corresponding to an energy scale of 15-20kzT (see Fig. 3).
It is interesting to note that kinesins operate most effi-
ciently in an energy scale corresponding to the energy
available from ATP hydrolysis.

In conclusion, FT links a set of physical quantities that
reveal the mechanochemical couplings of a motor, and our
results support a growing consensus that FT provides a
possible organizing principle for driven active systems.
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