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We use double-emulsion drops to experimentally investigate the defect structures of spherical shells of
nematic liquid crystals. We uncover a rich scenario of coexisting defect structures dictated by the
unavoidable finite thickness of even the thinnest shell and by the thickness variation around the sphere.
These structures are characterized by a varying number of disclination lines and pairs of surface point
defects on the inner and outer surfaces of the nematic shell. In the limit of very thick shells the defect
structure ultimately merges with that of a bulk nematic liquid crystal drop.
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Emulsions of liquid crystal in a continuous fluid such as
water have technologically important uses. They also pro-
duce fascinating defect structures due to the confinement
of the liquid crystal and the strong effect of the boundary
conditions on the ordering at the interface. For example,
nematic liquid crystals, constrained to lie parallel to the
interface of a drop, possess two intrinsic defects, called
boojums [1,2]. These defects are the inevitable conse-
quence of the elastic energy of the liquid crystal in the
drop and the parallel boundary conditions at the interface.
Even more fascinating structures result when small water
droplets are confined within the larger liquid crystal drop.
The liquid-crystal-mediated interparticle interaction
causes the small drops to align into chains [3,4]. The
simplest case of this is when there is a single inner drop,
leaving a shell of liquid crystal; in this case, the behavior
should depend on the relative size of the inner drop and on
the boundary conditions. For parallel boundary conditions,
a small inner drop does not have a large effect; the boojum
structure persists, but with two additional defects on the
inner surface, as required by the surface boundary condi-
tions [5]. However, as the size of the inner drop increases,
the very nature of the defect structure evolves. For very
thin shells, a totally new structure is predicted; instead of
two defects, there are four defects at each surface, organ-
ized in a tetrahedral fashion [6,7]. However, despite the
rich range of behavior expected, there have been no ex-
perimental investigations of defects in shells of nematic
liquid crystal as the shell is thinned.

In this Letter, we investigate the behavior of liquid
crystal shells as the their thickness is varied. For the
thickest shells, we observe a defect structure similar to
the boojum structure of a nematic drop. As the shell
becomes thinner, there is a transition to the tetrahedral
structure expected for very thin shells. However, for these
thin shells, we also see two unexpected and new defect
structures, consisting of two or three defects. These are the

first observations of the rich behavior exhibited by shells of
nematic liquid crystal.

To make spherical shells of liquid crystal we generate
double emulsions using an axisymmetric microfluidic de-
vice [8]. Both the inner and outer fluids are water that
contain 1 wt% poly-vinyl-alcohol (PVA), which stabilizes
the double emulsion and enforces tangential boundary
conditions for the nematic liquid crystal. We approxi-
mately match the density of the inner water to that of the
liquid crystal, pentyl-cyano-biphenyl (5CB), by adding
D2O to obtain �5CB � �inner � 2 kg=m3. The resultant
double-emulsion drops consist of an inner droplet of radius
a, encapsulated within a shell of liquid crystal of outer
radius R, all immersed in an aqueous solution. By varying
the fluid flow rates, we can vary the thickness and size of
the shells.

A typical example of a thick nematic shell is shown in
Fig. 1, where, using bright field microscopy, we focus on
the top [Fig. 1(a)], middle [Fig. 1(b)], and bottom
[Fig. 1(c)] of the large drop; the smaller inner drop is
located towards one edge as highlighted in Fig. 1(c). By
viewing these same images through crossed polarizers we
identify one boojum at the top of the large drop, as shown
in Fig. 1(d), which corresponds to the same position as
Fig. 1(a). There is a second boojum at the top of the smaller
drop, as shown in Fig. 1(e) and in the magnified view,
Fig. 1(h); this corresponds to the same position as Fig. 1(b).
Topological constraints require a second boojum on both
the inner and the outer surfaces. These can be observed in
Fig. 1(f) which corresponds to the same position as
Fig. 1(c). However, since the thickness of the shell is so
small in this location we are unable to distinguish the two
boojums and instead only observe a single one, even in the
magnified image shown in Fig. 1(i). Nevertheless a second
defect is required to satisfy the topological constraints,
which are governed by the Poincaré theorem [9]. The
resultant structure is reminiscent of a bipolar drop, where
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the inner droplet is located near one of the boojums of the
outer drop, as shown schematically in Fig. 1(g).

These shells are bipolar in nature; however, the inner
droplet is not located at the center of the liquid crystal
shell. To investigate the origin of the displacement of the
inner drop from the center, we heat the liquid crystal above
the nematic-to-isotropic transition temperature and bring
the inner drop close to the center of the outer one. Upon
cooling below the isotropic-to-nematic transition tempera-
ture, the inner drop initially remains in its original position;
subsequently, however, it always moves towards one side.
A typical example of this motion is shown in a series of
images in Figs. 2(a)–2(c). The initial position is shown in
bright field [Fig. 2(a)] while subsequent positions are
shown in images obtained with crossed polarizers
[Fig. 2(b) and 2(c)]. The droplet moves approximately
along the direction set by the nearest pair of boojums until
it reaches the outer surface, where the presence of the
stabilizing polymer prevents coalescence with the continu-
ous phase. To determine the nature of this motion, we
measure the separation between the centers of the two
drops, r, and find that it increases linearly in time as shown
in Fig. 2(d). The resultant velocity is approximately v �
0:7 �m=s.

Our observations suggest that the elastic energy of the
liquid crystal is minimized when the inner drop is located
on the periphery of the larger one. To elucidate this behav-
ior, we determine a trial texture for the director field that
approximately matches the experimental texture and cal-
culate the Frank free energy as the inner drop is displaced a
distance r from the center of the larger one. The trial
texture is generated from an ansatz for the 2D texture,
which is rotated about the line of motion of the inner
drop to obtain the full 3D texture. To obtain the 2D ansatz,
we use a conformal mapping technique that provides the
flow lines of an incompressible fluid around a circular
obstacle in a geometry that mimics our liquid crystal shell
[5,10]. As an example, we show the 2D texture for the
nematic director field when r � a and plot the correspond-
ing normalized energy, E=�KR�, withK the elastic constant
of the liquid crystal, as a function of a normalized center-
to-center distance, r=R, in Fig. 2(e). The calculation shows
that a droplet located exactly at the center of the larger drop
is in unstable equilibrium. This corresponds to a director
field with quadrupolar symmetry [11]. Any slight displace-
ment of the inner droplet from the center decreases the
separation of one pair of boojums, which corresponds to
the charges of a dipole approaching one another; this
decreases the energy. This results in an elastic force that
drives the motion of the inner droplet. From the energy
plot, we deduce that the elastic force increases with r. This
suggests that the drop should accelerate as it moves to-
wards the periphery of the larger one, whereas our experi-
ment indicates that the speed is roughly constant. This
discrepancy can be explained by the increased drag expe-
rienced by the drop as it approaches the boundary [12,13];
more detailed nematohydrodynamic calculations [14,15]
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FIG. 2 (color online). Displacement of the inner drop driven
by the elastic forces of the nematic liquid crystal: (a) t � 0 s;
(b) t � 13 s; (c) t � 55 s. 2a � 53 �m. 2R � 234 �m.
(d) Within the experimentally observed range, the motion is
uniform along the axis joining the two pair of boojums. (e) A
trial texture for the nematic director in the experimental situation
depicted in (a)–(c). The graph is a plot of the normalized energy,
E=�KR�, vs r=R.
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FIG. 1 (color online). Bright field (a)–(c) and cross-polarized
(d)–(f) images of a density matched nematic shell. The inner
fluid consists of a solution of H2O and D2O� PVA (1 wt%), the
middle fluid is the liquid crystal, and the outer fluid is H2O�
PVA (1 wt%). Drop sizes are 2a � 93 �m and 2R � 206 �m.
As the microscope focal plane is lowered, the upper (a), (d),
intermediate (b),(e), and lower boojums (c),(f) can be identified.
(g) Schematic of the director field configuration. (h), (i) are
magnifications of the inner drop in (e), (f) after some rotation;
this allows better visualization of the defects. The lower pair of
boojums cannot be resolved with optical microscopy and thus
appears as one.
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are required to fully explain the motion. Nevertheless, we
can estimate the average elastic force on the droplet over
its range of motion; it is of the order K. In our experiments,
we can deduce an elastic force, Fe, from its balance with a
rough estimate of the drag exerted by the liquid crystal over
the inner droplet, Fv � 6��va; we obtain that Fe is of
order K, consistent with the theoretical estimation.

Although the boojum structure of the bipolar drop is
observed for thicker shells, as the radius of the inner
droplet is increased, the defect structure should ultimately
transition to a qualitatively different configuration consist-
ing of four defects arranged in the vertices of a tetrahedron
[6,7]. We investigate this transition by generating double
emulsions with thinner shells. The four-defect shell is
expected when the shell thickness is below a critical value,
h� ’ e4

��������

Rrc
p

, where rc is the defect core radius [5]. When
the shell thickness is greater than h�, the shell with the
boojum structure has the lowest energy. For R � 100 �m
and rc � 10 nm, we obtain h� � 55 �m. Consistent with
this estimate, we find only the boojum-based shell structure
when a & R=2. By contrast, when a * R=2, completely
different behavior is observed. We are indeed able to
observe the theoretically predicted four defects as indi-
cated by the four dark spots on the surface of a typical
thin shell of nematic liquid crystal, observed in bright field
microscopy, shown in Fig. 3(a). The topological charge of
each defect, as determined by the rotation of the director
field around the defect core, is �1=2. This is deduced by
observing the structure under crossed polarizers
[Fig. 3(b)]; each defect has the expected pair of black
brushes. These results are the first observation of the
predicted defect structure for nematic order on a spherical
surface [6,7]. Unexpectedly, however, the defects do not
repel each other to occupy the four corners of a tetrahe-
dron; instead they are all located at the top of the sphere.
Moreover, for the thinnest shells we find a much richer
scenario than anticipated theoretically.

In addition to the shells that contain four defects, we
observe qualitatively different structures for similar values

of a and R. We find shells with only two defects on the
outer surface, as shown in Fig. 3(c). In this case, each
defect has surface topological charge �1 as confirmed by
the crosslike structure when observed through crossed
polarizers, shown in Fig. 3(d). This two-defect structure
is reminiscent of the boojum structure obtained for thicker
shells. Even more strikingly, we routinely observe a three-
defect structure, an intermediate state between the two
other configurations. This remarkable hybrid configuration
has three defects on the outer surface as shown by the
bright field image in Fig. 3(e). It consists of two�1=2 and
one �1, as confirmed by rotating the drop under crossed
polarizers, as shown in Fig. 3(f). Interestingly, we observe
similar occurrences of each of the three different defect
configurations; this suggests that each of the defect struc-
tures is equally accessible as the shells are made and that
the energetic barriers between the various states are very
high [5], preventing restructuring once the shells are
formed.

Although forming double emulsions with very thin
shells can produce three different defect configurations,
we find that in each case, the defects are all located at
the top of the drops. This results from the unavoidable
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FIG. 3 (color online). Three type of thin shells commonly
observed, distinguished by the number and type of defects:
(a),(b) Four defects, (c),(d) two defects, and (e),(f ) three defects.
For all shells 2a � 103 �m and 2R � 110 �m.
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FIG. 4 (color online). Buoyancy driven motion of the inner
drop in a nematic shell with four disclinations. 2a � 191 �m
and 2R � 204 �m. (a)–(c) are schematic visualizations of the
defect motion. The inner drop moves along the direction of
gravity, toward the midpoint of the arc connecting C and C0.
The defects are first distributed throughout the shell and migrate
in time to the top of the shell, ending in the final configuration
shown in Fig. 3(a) and 3(b). (d)–(g) are cross-polarized images
showing the time evolution of the defects motion: (d) t � 0;
(e) t � 70 s; (f) t � 90 s; (g) t � 110 s. The plane of focus is
always at the top of the double-emulsion drop. At approximately
zero time, the other two-defect locations are shown in the cross-
polarized images (h),(i). The particular defect configuration
allows clear visualization of the disclination lines, as shown in
the corresponding magnified images.
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nonzero thickness of the nematic shell and from the three-
dimensional character of the defects; the �1=2 defects are
lines spanning the shell while the �1 boojums are half-
radial and half-hyperbolic hedgehogs living in the outer
and inner spherical surfaces, respectively. As a result, the
defects overcome their mutual repulsion and migrate to the
thinnest region of the shell where the energy associated
with them is lowered. Since we systematically observe the
defects at the top of the shells, this suggests that the
thinning of the shell is not due to the nematic elasticity,
which would generate shells with randomly oriented defect
configurations. Rather, since the inner droplet is large,
buoyancy forces are comparable to K, suggesting that
buoyancy drives the motion of the inner droplet towards
the top of the shells.

To test this hypothesis, we monitor the motion of the
four defects in a baseball-like shell as the innermost drop is
deflected away from the center and moves towards the top.
We heat the sample above the isotropic-to-nematic transi-
tion temperature to remove any elastic forces on the inner
droplet, gently adjust its position to be near the center of
the outer drop, and then cool back into the nematic phase,
where we observe the motion of the defects as the top of the
shell thins [Figs. 4(a)– 4(g)]. Initially, when the inner
droplet is near the center of the outer drop, the four defects
are more widely separated although still not in the truly
tetrahedral arrangement, as shown in Fig. 4(a) and 4(d). As
the inner droplet moves upwards, the separation between
each pair of defects decreases; this is more pronounced for
the pair labeled A and B, as shown schematically in
Figs. 4(a)– 4(c). Optical micrographs of these defects,
visualized under cross polarizers, are shown in
Figs. 4(d)–4(g). Defects A and B are initially nearly par-
allel to the image plane allowing us to directly visualize
their structure; they are disclination lines extending
through the shell, as can be seen in the magnified images
in Figs. 4(h) and 4(i). As a result, their energy is lowered if
they move to the thinnest portion of the shell. This over-
comes the natural repulsion present in shells of uniform
thickness, confirming our hypothesis. The time required
for the droplet to move from its initial position to its final
position is t� 120 s. To account for this, we balance the
buoyancy force with the Stokes drag, using the lubrication
approximation [12], Fv � 6��v a2

h , with v � h=t the av-
erage velocity of the inner drop and h � R� a. We obtain
t � 118 s, which is consistent with our observations.

Our results highlight the fascinating range of structures
that are driven by the interplay between topological con-
straints and the nematic order of liquid crystals. While the
baseball-like structure originally predicted for thin nematic
shells is indeed observed, it represents but one of a large
number of other structures that arise from unavoidable
thickness variations of the shells. Despite their complexity,
the structures nevertheless fulfill the geometric constraints
imposed by having the nematic confined between two

spherical surfaces with tangential boundary conditions.
Similar interesting defect structures can also be expected
for shells with other crystalline order such as cholesteric or
smectic.
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