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We consider the interplay of the elastic pinning and the Anderson localization in the transport properties
of a charge-density wave in one dimension, within the framework of the Luttinger model in the limit of
strong repulsion. We address a conceptually important issue of which of the two disorder-induced
phenomena limits the mobility more effectively. We argue that the interplay of the classical and quantum
effects in transport of a very rigid charge-density wave is quite nontrivial: the quantum localization sets in
at a temperature much smaller than the pinning temperature, whereas the quantum localization length is
much smaller than the pinning length.
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A confluence of ideas formulated for mesoscopic disor-
dered electron systems on one side and for strongly corre-
lated clean systems on the other has brought forth a new
field—mesoscopics of strongly correlated electron sys-
tems. Prominent examples of such systems include
charge-density waves (CDWs), Wigner crystals, and
Luttinger liquids. Low-energy excitations in these systems
are of essentially collective nature and are described in
terms of elastic waves. In the presence of static disorder,
the conductivity of the systems is strongly suppressed at
low temperatures, which is commonly referred to as pin-
ning, or localization.

A key concept in the mesoscopics of disordered electron
systems is that of the Anderson localization [1]. This
phenomenon is due to the quantum interference of multiply
scattered electron waves on spatial scales larger than the
localization length �loc. The localization is destroyed by
inelastic electron-electron (e-e) scattering on the scale of
the dephasing length. The notions of weak localization and
dephasing due to e-e scattering, established for Fermi-
liquid systems [2], have recently been shown to be also
applicable to Luttinger liquids [3].

On the other hand, considering the interplay of disorder
and interaction in the opposite limit of a very strong
Coulomb interaction, one arrives at the concept of pinning
of elastic waves on the spatial scale of the pinning length
�pin [4]. This concept has a long history [5,6] and applies
not only to CDWs and similar electron systems but, more
generally, to every elastic object in a random environment,
ranging from domain walls in ferromagnets and ferroelec-
trics to vortex lattices in type-II superconductors. However,
as far as strongly correlated electron systems are con-
cerned, the notions of Anderson localization and pinning
are often viewed in the literature as essentially synony-
mous. Specifically, the Anderson localization of electrons
and the pinning of CDWs are thought of as two sides of the

same phenomenon which gradually evolves with changing
strength of e-e interaction.

However, it is useful to recall that the physics of local-
ization and pinning, as we know them from the pioneering
works by Anderson [1] and Larkin [4], respectively, is
distinctly different: the localization is a quantum phenome-
non, whereas the pinning is essentially classical. This
distinction has important consequences. In particular, in
classical elastic systems at vanishing coupling to the ex-
ternal thermal bath, any inelastic scattering results in the
activated temperature behavior of the mobility at low T. On
the other hand, in the case of the Anderson localization, it
was argued that in the limit of vanishing coupling to the
bath a disordered system of weakly interacting one- or two-
dimensional electrons cannot support either activated or
variable-range hopping transport at low T, undergoing
instead a metal-insulator transition at a finite critical tem-
perature Tc [7].

With this background in mind, we now formulate the
main question we are concerned with here: What is the
relation between pinning and localization? Which of them
restricts the mobility of strongly correlated CDWs more
effectively? Specifically, we aim to understand what are the
ratios of the characteristic scales in energy space and in
real space, Tc=�cl and �loc=�pin, respectively, where �cl is
the pinning temperature [8] [defined below in Eq. (4)]. In
this Letter, we focus on transport of CDWs in one dimen-
sion (1d) in the limit of strong interaction, i.e., on the case
of very rigid CDWs, and consider spinless electrons.

Let us specify the model. The spatial modulation of the
charge density ��x� is written in terms of a smoothly
varying phase ��x� of a single-harmonic CDW as � �
�@x�=�� cos�2�kFx����=��. The Hamiltonian H �
Hel �Hkin �Hdis is given by a sum of the elastic part
Hel � c

R
dx�@x��

2=2, the kinetic part Hkin �
�vF

R
dx�2=2, where � is the momentum conjugated to
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� (throughout the paper @ � 1), and the part Hdis describ-
ing backscattering of electrons off a static random poten-
tial:

 Hdis �
1

2��

Z
dx�Vb�x�e

�2i��x� � H:c:�: (1)

The disorder is taken to be of white-noise type with the
correlators Vb�x�V�b�0� � w��x� and Vb�x�Vb�0� � 0. The
elastic constant c and the Fermi velocity vF are input
parameters of the low-energy theory and include Fermi-
liquid-type renormalizations coming from the ultraviolet
scales. The electron current j is related to � via the Fermi
velocity: j � vF�, so that the velocity of elastic waves is
given by u � ��vFc�1=2. The system can thus be charac-
terized by two velocities, c (up to @, the elastic constant in
1d is velocity) and u, the former describing the static
properties of a CDW and the latter its dynamics. Their ratio

 K � u=�c	 1 (2)

is known as the Luttinger constant and is the main parame-
ter of our consideration.

The classical limit corresponds to K ! 0 with the rigid-
ity c � const. To see the significance of this limit, consider
the correlator of the phase � in the Matsubara representa-
tion D�x; �� � h��0; 0����0; 0� ���x; ���i, which in the
absence of disorder is given by

 D 0�x; �� �
K
4

ln
��

u
�T�

�
2

sinh
�Tx�
u

sinh
�Tx�
u

�
; (3)

where x
 � x
 iu� and a proper ultraviolet cutoff is
assumed, e.g., x! x� �sgnx. With decreasing K the
system rapidly acquires rigidity: at zero T, the long-range
order is only broken on large length scales at ln�jxj=�� �

1=K. In the classical limit, quantum fluctuations of �
vanish and only thermal fluctuations with D0�x; �� �
Tjxj=2c are present. At the same time, the classical limit
is also the static limit (Hkin ! 0). In the presence of dis-
order, the long-range order is broken in the classical limit
already at T � 0, so that D�x; ��, averaged over disorder,
becomes a function of x=�pin. The pinning length �pin and
the amplitude �cl of elastic-energy fluctuations on the
scale of �pin (assuming that �pin � �) are

 �pin � ��c2=w��1=3; �cl � c=�pin: (4)

Slightly beyond the classical limit, at 0<K	 1,
quantum fluctuations soften the pinning potential by
changing the exponent of the pinning length �pin !

��c2=w��1=�3�2K�. This effect is of little importance in
our discussion [and of no importance whatsoever if K	
1= ln�c2=w���. The essential quantum effects are the onset
of dynamics in the system, with a characteristic velocity u,
and the emergence of the quantum localization. The latter
is characterized by the localization length �loc and the
‘‘localization temperature’’ T1, below which the localiza-
tion effects become strong [9]. We will see below that the
behavior of �loc and T1 as a function of K for K	 1 is
highly nontrivial.

In this Letter, we rely on the conventional bosonization
(poorly suited to study the localization and dephasing but
conveniently treating strong and weak interaction in the
disordered system with essentially the same effort). We
explore the large-! expansion of the ac conductivity to
extract the relevant parameters of the system [10].

The conductivity is given by the Kubo formula [11] with
the current j � i@��=�:

 ��!; T� � �
1

i!
e2vF

�
�

1

i!
e2

�2

�Z 1=T

0
d�ei�n�

Z
dxhT� _��x; �� _��0; 0�i

�
i�n!!�i0

: (5)

The averaging over � in Eq. (5) is performed with the
replicated action S � S0 � Sdis, where

 S0 �
c
2

X
m

Z
dx
Z
d�
�
�@x�m�

2 �
1

u2 �@��m�
2

�
; (6)

 

Sdis �
w

�2���2
X
m;m0

Z
dx
Z
d�


Z
d�0 cos�2�m�x; �� � 2�m0 �x; �

0��: (7)

Inspection of Eqs. (5)–(7) shows that ��!; T� is expand-
able in powers of disorder as

 ��!; T� � �
e2vF

�
1

i�!� i0�

X
N�0

��cl=T�
3N

��T�=u�2KNfN��n=T�ji�n!!�i0; (8)

which is at the same time the large-! expansion. The
functions fN are dimensionless (parametrized by the con-
stant K) real functions of �n=T, with f0 � 1.

At first order in w we have a contribution to ��!; T� in
terms of D0�x; �� [Eq. (3)]:
 

�1�!; T� � �
4

i!
e2

�2

w

�2���2

 �D2
n�2C0 � Cn � C�n��i�n!!�i0; (9)

 

Dn�0 �
Z
d�ei�n�

Z
dx@�D0�x; �� �

i�vF

�n
;

Cn �
Z
d�ei�n��4D0�0;��;

(10)

D0 � 0. When calculating the difference 2C0 � Cn � C�n
in Eq. (9), the ultraviolet cutoff in Eq. (3) can be neglected
for K < 3=2 and �1�!; T� is then explicitly obtained as
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�1�!; T� � �2ie
2vF�3

cl=�T!
3��2�T�=u�2KK2��1� 2K�

 ���2�1� K� � ��1 sin��K�

 ��K � i!=2�T���1�1� K � i!=2�T��:

(11)

An important observation is that in Eq. (11) there appears a
characteristic scale !� KT. Specifically, for K	 1 the
real part of �1�!; T� is written as

 Re�1�!; T� ’ 4e2vF!
3
pin	=�

3!2�!2 � �2�KT�2�;

(12)

where !pin � u=�pin � �K�cl is the pinning frequency
and 	�!;T�� ��maxf!;Tg=u�2K is a weak function that
describes the renormalization of disorder by quantum fluc-
tuations [can be neglected forK	 1= ln�u=�maxf!; Tg�].
The scaling of Re�1 in Eq. (12) with the ratio !=KT
reflects the difference in the energy scales characterizing
the behavior of ��!; T� at zero T and that of the dc
conductivity �dc as a function of T. The characteristic !
for the zero-T ac conductivity is !pin, whereas the charac-
teristic T for �dc is �cl �!pin=K.

The ac conductivity can be equivalently rewritten as
��!; T� � e2vF=���i!�M�!; T��, where the current-
relaxation rate ReM depends, in general, on ! and T.
For high T � maxf�cl; T1g, when both pinning and local-
ization are suppressed, the ! dispersion of ��!; T� should
obey the Drude formula; i.e., all terms in M of order in w
higher than 1 can be neglected. The first-order expansion
(12) allows us to extract the Drude-relaxation rate in the
CDW state (here and below we omit the factor 	):

 ReM�!; T� � 4!3
pin=�

2�!2 � �2�KT�2�: (13)

The dc conductivity for T � maxf�cl; T1g and the back-
scattering time at ! � 0 thus read

 �dc�T� � �3K2�e2vF=!
3
pin�T

2 � �K�e2�2=w�T2; (14)

 ��T� � !�1
pin��T=�cl�

2: (15)

The dependence of � on K for small K is of central
importance to us. First of all, let us note that, although
�dc decreases with increasing strength of interaction, �
diverges in the classical limit K ! 0, c � const. This
divergency suggests that the quantum localization is de-
stroyed at temperature T1 which is much smaller than the
classical scale �cl.

To find T1, we use the general condition, valid in 1d for
arbitrary strength of interaction,

 ��T1� � ���T1�; (16)

where ���T� is the phase-breaking time [12]. For �� 	 �,
the quantum-interference effects are suppressed on the
ballistic scale and so reduce to the weak-localization cor-
rection to the conductivity (see Ref. [3] for a derivation of
this correction at 1� K	 1), whereas for �� � � the

localization, which develops on the scale of the mean free
path, is only slightly affected by the inelastic processes.
Within the bosonization framework, one of the regular
ways to extract �� is to proceed to the third order �N �
3� in Eq. (8), which is a minimal order that exhibits the
Anderson localization [13]. In this Letter, however, we do
not follow this intricate path and rely on a heuristic argu-
ment leading in the limit of strong interaction to

 ��1
� �T1� � T1: (17)

For a weakly interacting Luttinger liquid [3], ��1
� �T� �

�1� K��T=��T��1=2, which gives ��1
� �T1� � �1� K�

2T1. It
is important that (i) soft inelastic scattering with energy
transfers !0 	 ��1

� �T� is not effective in dephasing the
localization effects (similarly to Fermi liquids [14]) and
(ii) characteristic !0 & T. Hence, the upper bound for
��1
� �T� is the temperature itself. Piecing together these

results [and assuming that ��1
� �T� is a monotonic function

of the interaction strength], we arrive at Eq. (17).
Combining Eqs. (15)–(17) we get

 T1 � K1=3�cl; (18)

i.e., the quantum localization sets in when �dc is already
strongly suppressed by the pinning.

To find �loc, we first note that the mean free path l�T� at
T 	 �cl turns out to be much smaller than �pin. As follows
from Eq. (15), for excitations characterized by velocity u:
l�T� � u��T� � �pin��T=�cl�

2. Since in 1d the localiza-
tion is established on the scale of the mean free path, we
have for the localization length �loc�T� at temperature T1:

 �loc � K
2=3�pin: (19)

This is the same spatial scale at which the Giamarchi-
Schulz [11,15] renormalization-group flow enters the
strong-coupling regime [16]. Note that it is the localization
that develops at this scale, not pinning, which is worth
emphasizing in view of the Anderson localization length
and the pinning length being conventionally thought to be
the same in CDWs.

We thus see that both T1=�cl and �loc=�pin are small in
CDWs, which is quite remarkable since the relative
strength of pinning and localization depends on whether
we consider scaling in temperature or in real space. In the
ultraviolet limit of large T or small spatial scale L neither
pinning nor localization is important. With decreasing T,
the classical pinning ‘‘wins,’’ i.e., happens at T ��cl �
T1. A subtle point, however, is that with increasing L, it is
the quantum localization that wins; i.e., it develops at L�
�loc 	 �pin. This unusual behavior reflects the peculiarity
of the very rigid electron system: the spatial scale �pin of
the low-energy excitations is much larger than the mean
free path l�T� which characterizes their ‘‘center-of-mass’’
diffusion. Counterintuitively, the Anderson localization
length �loc vanishes to zero in the classical limit. This
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implies that the conductance at low T will be strongly
suppressed for L larger than �loc, which is much smaller
than �pin.

We finish with a brief discussion of the T dependence of
�dc for T 	 �cl. Since in 1d the averaging over disorder
assumes summation of random resistances connected in
series, the activation over barriers whose typical height is
�cl and statistics is Gaussian is described by ln�dc /
���cl=T�2, rather than by the Arrhenius law. This falloff
continues with decreasing T down to the critical tempera-
ture Tc � T1 [Eq. (18)], below which ��1

� �T� and �dc�T�
vanish to zero [17], similar to Ref. [7]. Since
�pin=�loc�T� � j ln�dc�T�j for �cl � T � T1, the presence
of the quasiclassical barriers does not affect the estimate
for Tc.

To summarize, there are two distinctly different
disorder-induced phenomena that limit the mobility of
CDWs: quantum localization and classical pinning. We
have discussed their interplay in the transport properties
of CDWs in 1d. The pinning turns out to be stronger in the
respect that the pinning temperature �cl is larger than the
critical temperature Tc of the localization transition. On the
other hand, the localization is stronger in that the quantum
localization length �loc is shorter than the pinning length
�pin. A rigorous analytical description of the localization of
CDWs [in particular, a derivation of Eqs. (16) and (17)] is
clearly warranted. More generally, the challenge is to study
the dependence of the conductivity��!; q; T� as a function
of frequency, momentum, and temperature, where both
phenomena and corresponding scales in all three variables
will show up. Here, we have addressed the L dependence
of the dc conductance and the T dependence of the con-
ductivity at !, q � 0.
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