
Power-Law Conductivity inside the Mott Gap: Application to �-�BEDT-TTF�2Cu2�CN�3

Tai-Kai Ng1 and Patrick A. Lee2

1Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 31 May 2007; published 8 October 2007)

The charge dynamics of spin-liquid states described by U�1� gauge theory coupling to fermionic
spinons is discussed in this paper. We find that the gapless spinons give rise to a power-law optical
conductivity inside the charge gap. The theory is applied to explain the unusual optical conductivity
observed recently in the organic compound �-�BEDT-TTF�2Cu2�CN�3. We also propose an optical
experiment to search for the in-gap excitations in the kagome spin-liquid insulator.
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Recent work has shown that the organic compound
�-�BEDT-TTF�2Cu2�CN�3 [1–3] and the spin-1=2 kagome
system ZnCu3�OH�6Cl2 [4–6] hold great promise as the
first two examples of spin-liquid states realized in dimen-
sions greater than one [7–9]. Spin-liquid states are Mott
insulators with an odd number of S � 1

2 spin per unit cell,
which shows no long-range magnetic order. They are
proposed to exist in systems either in the vicinity of the
Mott transition [7] or with frustrated lattice structures. In
both cases the system can be modeled by an appropri-
ate Hubbard model with on-site repulsion U and hop-
ping integral t at half filling. For large enough U com-
pared with t, charge excitations are gapped and the system
is a spin liquid if long-range order is absent in the spin
sector.

The two recently discovered systems are believed to be
two-dimensional spin liquids. In the case of
�-�BEDT-TTF�2Cu2�CN�3 the system is described by a
Hubbard model on a triangular lattice. Since the system
can be driven metallic (indeed superconducting) under
pressure, it is believed that U is not very large compared
with t and the insulator is near the Mott transition [7,8]. In
this case charge excitations acquire a gap and it is pro-
posed that spin-charge separation occurs and spin 1

2
excitations (spinons) form a Fermi surface [7,8]. In the
case of ZnCu3�OH�6Cl2, it is believed that U� t and the
spin dynamics are described by the antiferromagnetic
Heisenberg model. The frustrated kagome lattice gives
rise to a spin-liquid state with Dirac fermions excitation
spectrum [9]. A common feature of these spin-liquid states
is that the spin excitations are always coupled to internal
U(1) gauge fields representing spin-chirality fluctuations
[7–9] in the spin systems.

It is often thought the Mott insulators are fully gapped in
their optical (charge) responses. Furthermore, the spinons
are neutral and do not absorb electromagnetic radiation.
Here we point out that due to coupling with the internal
gauge field, the spinons do contribute to optical conduc-
tivity, yielding a power-law absorption at low frequencies.
This may explain some puzzling experimental observa-
tions recently reported in the organics [10].

The dynamics of the spin-liquid states can be studied in
a slave-rotor representation of Hubbard models [7] with ap-
propriate lattice structures. In this representation the elec-
tron operator is represented as c�c��i� � f�f��i�e

����i�,
where f�f��i� is the spin annihilation (creation) operator
and e����i� lowers (raises) charge by one. After making a
mean-field approximation, the low energy effective action
of the system can be written in terms of � and f�f�� fields
separately, L1�2� � Lc � L

1�2�
s , where Lc represents the

charge dynamics and Ls represents the spin dynamics of
the system. Lc is described by the strong coupling phase of
a quantum x� y model [11],
 

Lc �
X
i

1

U
j�@t � i�a0 � A0�	�ij

2

� teff

X
hi;ji

cos��i � �j � � ~aij � Aij�	; (1a)

coupling to internal gauge fields (a0, ~a), where teff � �t
with �< 1 being a numerical factor determined self-
consistently from the mean-field equation, (A0, ~A) repre-
sents the real electromagnetic field coupling to the system,
and

 L�1�s �
X
�

�
f�� �@t� ia0��f�f��

1

2ms
f�� ��ir� ~a�2f�

�

(1b)

in the case of �-�BEDT-TTF�2Cu2�CN�3, which is believed
to possess a spinon Fermi surface. �f is the chemical
potential; m�1

s is expected to be of order of the exchange
J� t2=U. In the case of ZnCu3�OH�6Cl2 where spinons
have a Dirac fermion spectrum,
 

L�2�s �
X
��

� ���@� � i�a� � A��	�� ��

� � ���@� � �a� � A��	�� ��; (1c)

where � � 0, 1, 2, and �� are Pauli matrices. The two-
component Dirac spinor fields  
� describe two inequiva-
lent Dirac nodes in the spinon spectrum [9].
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Effects of disorder and phonons can also be included in
the actions. Their contributions can be included by adding
a term

 L0 �
X
~p; ~q

�V�q�c�~p� ~q�c ~p� �M�q�c
�
~p� ~q�c ~p��b~q � b

�
� ~q�

� b�~q �@0 �!~q�b~q�

to L�1�s , where V�q� is a disordered potential and b�b�� ~q are
phonon annihilation (creation) operators with momentum
~q. M�q� is the electron-phonon coupling and !~q is the
phonon dispersion. A corresponding term can also be
added to L�2�s for Dirac fermions.

The thermodynamic and magnetic properties of the
above systems have been studied in several previous papers
[7–9,12]. We shall concentrate on the charge dynamics of
these spin liquids here. We assume a Mott insulator state
with no broken symmetry and with isotropy in space. The
current response function is given by the conductivity,
which can be decomposed into longitudinal and transverse
parts �k and �?. For a U�1� spin liquid, the Ioffe-Larkin
composition rule [13] relates the physical� to the response
function of the spin and charge components:

 �?�q;!� � ��
�1
s?�q;!� � �

�1
c?�q;!�	

�1 (2)

and similarly for �k. Here �s and �c are the proper
response functions of the spin and charge (�) fields appear-
ing in the action Ls and Lc, respectively. The proper
response functions represent sum of all diagrams which
cannot be separated into two parts by cutting one interac-
tion line associated with either the real or internal gauge
field and represent the current response of the charges and
spinons to the potential ~a� ~A and ~a, [13,14] respectively.
Notice that both the phonon and impurity contributions can
be included in the definition of the proper response func-
tions. The origin of the Ioffe-Larkin rule is that an external
~A field induces a nonzero ~a field, which is needed to
enforce the constraint jc� � js� � 0 [14]. Thus even
though the ~A field couples only to the � field, the induced
~a field indirectly couples the gauge field to the gapless
spinons.

We parametrize the longitudinal response of the charge
field by a dielectric constant "c and ignore the analytic
correction in q2, !2 for small q and !. Then

 "c � 1�
4�i�ck
!

: (3)

We expect "c � 1 to decrease with increasing charge
gap. Furthermore, for small q there is no distinction be-
tween longitudinal and transverse response in an insulator.
Using (3) for both, we find using Eq. (2)

 �k�?��q;!� �
!�s;k�?��q;!�

!� i� 4�
"c�1��s;k�?��q;!�

: (4)

We should point out that the replacement of the charge

response by a dielectric constant is not as innocent as it
appears. This step should be considered in the spirit of
random phase approximation and justified using a 1

N ex-
pansion. The concern is the existence of Feynman dia-
grams involving multiple gauge field lines going across.
In the language of proper response function, these become
part of the charge vertex which couples to the external
gauge field. Since the gauge field is gapless, the approxi-
mation of this vertex by a dielectric constant is not strictly
correct except as leading order in 1

N [15].
Now we consider the optical conductivity given by

�?�q � 0; !�. In this limit there is no distinction between
longitudinal and transverse, and we can drop the ? sub-
script. The spinon conductivity is expected to be metallic-
like. We can safely assume Re��s�0; !�	 � ! and
Im��s	 � Re��s	 for small ! and obtain from Eq. (4)

 Re ���!�	 � !2

�
"c � 1

4�

�
2 1

Re��s�!�	
: (5)

Note that Re��!� � 0 for ! � 0 as expected for an insu-
lator, but we find contribution inside the gap for small !.
First we consider the case when disorder scattering of the
spin is weak. Then �s�!� � ne2��!; T�=ms. The domi-
nant contribution to ��1 is inelastic scattering due to the
gauge field [14], which is given by 1

�� �max�@!; kBT�	4=3.
The exponent 4=3 comes from the scattering of the fermi-
ons from gauge fluctuations, whose frequency scale as
q1=3. These soft fluctuations give rise to a non-Fermi-liquid
self-energy which scales as !2=3. However, for transport
scattering rate, two extra powers of q are needed to account
for momentum relaxation, leading to the 4=3 power law.
For @!> @=�0, kBT, where �0 is the elastic scattering
time, we find

 Re ���!�	 � !3:33

�
"c � 1

4�

�
2 ms

n
; (6)

in qualitative agreement with what is observed experimen-
tally in �-�BEDT-TTF�2Cu2�CN�3 [10]. Our theory also
predicts that Re���!�	 cross over to �!2 for @!< kBT.
The above results are strongly modified if localization
effect is important and ��!� vanishes at !! 0 faster
than !. In this case

 ��!� � �s�!�

will show similar behavior as observed in usual strongly
disordered metals.

The above analysis can be generalized straightforwardly
to the kagome system ZnCu3�OH�6Cl2 with the ‘‘proper’’
response functions replaced by the corresponding func-
tions for Dirac fermions. In this case �s�q;!� has the
universal form

 �s�q;!� �
e2

8

� �c2q2 �!2��1���=2

i!
; (7)

where � � 0 for noninteracting Dirac fermions and is
nonzero in the presence of gauge field interaction. The
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value of � can be estimated perturbatively in 1=N expan-
sion [15], but its exact value is unknown. Putting �s�0; !�
into Eq. (4), we predict Re���!�	 / !2�� for �< 1 and
Re���!�	 / !� for �> 1, and the optical conductivity
probes directly the unknown exponent �. Since the ka-
gome system is deep in the Mott insulator regime, the
observation of power-law conductivity inside the Mott
gap stronger than !4 [see Eq. (14c) below] will be strong
evidence for the existence of gapless spinons and the
importance of gauge fields.

We shall now study in more detail the general dielectric
response "�q;!� of �-�BEDT-TTF�2Cu2�CN�3, which is
believed to possess a spinon Fermi surface. We shall
assume that the residual interactions are weak enough so
that the spinons are in a Fermi liquid state.

The dielectric function of the spin liquid is given by

 "�q;!� � 1� ve�q�	d�q;!�;

where 	d�q;!� is the proper density-density response
function of the system that represents the sum of all
polarization diagrams, which cannot be separated into
two parts by cutting one Coulomb interaction line associ-
ated with the real electromagnetic field [13,15]. ve�q� �
4�e2=q2 is the real Coulomb interaction. We assume here
that the (3D) system is a sum of layers of spin liquid.

Charge conservation gives 	d � �q2=!2�	k, where 	k
is the longitudinal current-current response function that is
in turn given by �k � e2	k=i!. Combining these relations
we obtain the usual formula

 "�q;!� � 1� 4�i�k�q;!�=!; (8)

where �k is related to �sk by Eq. (4). In the absence of
scattering, we expect the spinon density-density response
function to be

 	ds �
dn
d�
�
i
!
vFq

; (9)

where 
 is the quasiparticle density of states at the Fermi
level and vF is the Fermi velocity. Equation (9) is valid in
Fermi liquid theory and has been shown to remain appli-
cable for small q, ! when gauge fluctuations are treated to
two loop order [15]. Particle conservation again allows us

to write �sk � i!	ds=q
2. Combining these results, we find

 �k�q;!� �
�
"c � 1

4�

�
!
i

�
1�

i!
�sk

�
"c � 1

4�

��
�1

�

�
"c � 1

4�

�
!
i

�
1�

q2

	ds

�
"c � 1

4�

��
�1
: (10)

Using Eq. (8), we obtain at small q

 "�q;!� � "c �
��"c � 1�2=4�	q2

dn
d��

i
!
vFq

: (11)

The static dielectric constant is given by the charge part
"c, and the full dielectric function is in principle measur-
able by electron diffraction.

Phonons have small effects on the above results. They
only modify the interaction parameter 
 and renormalize
the compressibility @n=@�. The effect of disorder can be
included by modifying 	ds�q;!� into a diffusive form
dn
d�

Dq2

Dq2�i! if localization effect is not important [16]. In

this case, we obtain

 "�q;!� � "c �
�"c � 1�2�Dq2 � i!�

4��s;k
; (12)

where D is the spinon diffusion constant and �s;k �

e2 dn
d�D. For q � 0, Eq. (12) is consistent with the ac

conductivity given by Eq. (5) as expected.
It should be emphasized that the coupling of density and

current responses to spin excitations exists rather generally
in insulators and does not rely on existence of a spin-liquid
state. Assuming that the electronic properties of the insu-
lator are described by a Lagrangian with a one-particle
term and an effective electron-spin coupling of form L0 �
~S�� � ~� �;where  � �c"; c#� is a two-component spinor,
c�s are electron operators, and ~S is an effective spin
operator, the leading order coupling terms between spins
and density/current fluctuations can be derived and are
represented in the Feynman diagram shown in Fig. 1(a),
where the solid lines are electron propagators. In real
space-time, the diagrams are represented by expressions
of form

 

���x; x0�; x0�; ~S� �
X

��0��0
G��x� x0��ĵ��x�G��x0� � x�S

��x0������0G�0 ��x�S�
0
�x0���

�0
�0�

�
X
�

G��x� x0��ĵ��x�G��x0� � x�fG����x��S
x�x0��Sx�x0�� � S

y�x0��Sy�x0��	

�G���x�S
z�x0��S

z�x0�� � i���G����x��S
x�x0��S

y�x0�� � S
y�x0��S

x�x0��	g; (13)

where ĵ��� � 0; 1; 2� is the electron current operator and x � � ~x; t�, x0���� � x0 � ����x=2. Assuming that the electrons
have a gapped spectrum (insulator), the corresponding Green’s functionG��x� is short-ranged and the contributions mainly
come from small �x region. Therefore we can expand G��x0 
 �x=2� x� �G��x0 � x� 
 ��x=2�@xG��x0 � x� � . . . ,
S��x0 
 �x=2� � S��x0� 
 ��x=2�:@x0S� � . . . , etc., in Eq. (13) to derive the leading order spin-density (current) coupling
terms in the insulating state in the continuum limit. A corresponding expansion for metallic ferromagnetic states has been
reported previously [17]. By keeping two sites per unit cell, this procedure can be extended to derive the correction to
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optical conductivity in the antiferromagnetically ordered
state in the Hubbard model, which is a competing state to
the spin-liquid state observed in the organic compound
�-�BEDT-TTF�2Cu2�CN�3 [10]. In this case, G�x� !
Gab�x� and ~S�x� ! ~Sa�x� � ~m� ~x� � ��1�a ~n� ~x�, where a,
b � A, and B are sublattice indices. ~m and ~n represent
magnetization and staggered magnetization fluctuations,
respectively. The low energy contribution to optical con-
ductivity is dominated by coupling of density fluctuations
to two spin wave processes represented by coupling to ~n
fields. After some algebra, we obtain in the small wave-
vector limit
 

�0�q;!; q0;�; q� q0; !��; ~S�

�!� ~q: ~q0� ~n� ~q0;�� ~n� ~q� ~q0; !���: (14a)

We have assumed that the antiferromagnetic state is de-
scribed by usual mean-field theory with staggered magne-
tization hni � 0. The corresponding correction to proper
density-density response function [Fig. 1(b)] is

 �	d�0; !� �
1

V�

X
q0�

j�0�0; !; q0;�;�q0; !��; ~S�j2

��2 � c2
mq02���!���2 � c2

mq0	2
;

(14b)

where cm �Uhni is the spin wave velocity derived from
the mean-field theory. Evaluating the integral, we find that
the correction to optical conductivity is

 ���!� � e2

�
!
cm

�
d�2

; (14c)

for !� Uhni, where d is the dimension. We note that the
coupling vertex in Fig. 1(a) involves 3 fermion lines. The
virtual excitation of these electrons implies a factor of
�t=U�3 if we are deep in the insulator where U� t. Thus
the contribution to ��!� has a small factor of �t=U�6. This
is probably why the contributions from spin waves are
usually ignored in the discussions of optical conductivity
of Mott insulators. We note that this suppression factor
does not appear for the spin liquid. Here we consider
systems in proximity to the Mott transition, and the

�t=U�6 factor does not appear in Eq. (14c). Even so, we
note that the optical conductivity is enhanced in the spin
liquid compared with the antiferromagnetically ordered
state, in agreement with what is observed experimentally
[10].

In conclusion, we have shown that gapless spinons in a
spin-liquid state give rise to a power-law optical absorp-
tion inside the Mott gap that is larger than that expected
for two spin wave absorption in a Neel ordered insu-
lator. Recent experiment has reported the surprising find-
ing that the low temperature optical absorption in
�-�BEDT-TTF�2Cu2�CN�3 is larger than another com-
pound, �-�BEDT-TTF�2Cu�N�CN�2	Cl, which exhibits
Neel ordering but is ‘‘closer’’ to the Mott transition in
that it has a smaller Mott gap [10]. Our result gives a
natural explanation of this puzzle. We believe that
power-law absorption, especially if it can be observed in
a large gap insulator such as the kagome system, is strong
evidence for the existence of gapless spinons and gauge
fields.
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Kanoda, and G. Saito, Phys. Rev. B 74, 201101(R) (2006).
[11] S. Florens and A. Georges, Phys. Rev. B 70, 035114

(2004).
[12] C. P. Nave, S.-S. Lee, and P. A. Lee, arXiv:cond-mat/

0611224.
[13] L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988 (1989).
[14] P. A. Lee and N. Nagaosa, Phys. Rev. B 46, 5621 (1992).
[15] Y. B. Kim, A. Furusaki, X.-G. Wen, and P. A. Lee, Phys.

Rev. B 50, 17 917 (1994).
[16] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57,

287 (1985).
[17] C. Nayak, K. Shtengel, D. Orgad, M. P. A. Fisher, and

S. M. Girvin, Phys. Rev. B 64, 235113 (2001).

S

jx

2/' xx

S2/' xx
)(a

n
)(b

n

FIG. 1. (a) Leading order Feynman diagram representing cou-
pling between spin and density or current fluctuations. Solid
lines represent electron Green’s functions. There is another
diagram where electron lines reverse in direction. (b) Corre-
sponding Feynman diagram representing correction to proper
density-density response function.
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