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We show that 2D self-assembled domains can remain trapped in a large variety of long-lived and
metastable shapes that arise from an interplay of crystalline anisotropy and relaxation of elastic strain. On
commonly used cubic (111) substrates, these shapes include extended or stacked structures made up of
triangular domains connected at their corners, compact shapes with both convex and concave curvatures
and others with narrow and elongated arms. We show that all of these distinct experimentally observed
shapes can be explained within a unified framework and present a phase diagram that systematically
classifies the metastable shapes as a function of their size.
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The study of shapes of crystals has received consider-
able attention since the early work of Wulff [1] as it
provides quantitative information on the energetics and
kinetics of surface processes. Shapes of crystalline nano-
structures can also strongly influence their functional (e.g.,
electrical and optical) properties. According to the classic
construction of Wulff [1], the shapes of unstrained crystals
in equilibrium are (1) independent of size, (2) always
convex, and (3) unique, in the sense that for a given
azimuthal dependence of the surface energy, there is a
unique shape that minimizes the free energy of the crystal.
More recent work has shown that long-range interactions
due to elastic, electrostatic, or magnetic effects can com-
plicate this simple picture. In particular, detailed studies of
the shapes of 3D crystalline inclusions and quantum dots,
2D surface-stress domains and nanoislands, and epitaxial
nanowires have clearly established the size dependence of
equilibrium shapes in strained systems.

In case of 2D self-assembling systems, two types of
strain-induced shape transitions have been identified:
(1) first-order transitions that involve elongation of initially
symmetric shapes (squares or circles) along low-energy
crystalline directions beyond a critical size [2–5] and
(2) continuous evolution of stress domains from convex
Wulff-like shapes at small sizes to shapes with concave
boundaries at large sizes [6]. However, more intriguing
shape transitions that do not fall under the two classes
described above have also been reported on cubic (111)
surfaces widely employed in epitaxial growth. Examples
include the connected domain configuration of surface-
stress domains on Si(111) [Fig. 1(a)] and elongated shapes
of Co islands on Pt(111) with arms that run along high-
energy crystallographic orientations [Fig. 1(b)] [7].

Motivated by experimental observations of domain
shapes on cubic (111) surfaces, we develop a unified
description that elucidates and systematically classifies
all the possible strain-stabilized shapes in this system.
We find that the interplay between elastic relaxation and
crystalline anisotropy on these material surfaces gives rise
to a large variety of novel shapes not found on their (001)

counterparts [2–4]. A key result of this work is the obser-
vation that almost all the shapes observed in experiments
are not true equilibrium shapes, in the sense of being the
global minimizers of the total energy, but are configura-
tions trapped in shallow metastable minima. Subsequently,
for a given size, a unique equilibrium shape will not always
be obtained in the presence of strain. In what follows, we
explicitly map out the energy landscape for strain-induced
shapes and present a phase diagram that shows all the
possible metastable configurations as a function of the
size of the self-assembled domains.

Some of the intriguing shapes of strained domains and
islands found on (111) surfaces are given in Fig. 1.
Figure 1(a) is an image of an array of (7� 7) reconstructed
domains on a (1� 1) reconstructed Si(111) held in equi-
librium at 864 �C. It is well known that difference in
surface stress between the two reconstructions (�� �
�1�1 � �7�7) plays an important role in the formation
and stability of the (7� 7) domains [8]. While earlier

FIG. 1 (color online). (a) LEEM images of (7� 7) recon-
structed domains on a (1� 1) reconstructed Si(111) surface.
The domain boundaries are oriented along h110i. The areas of
the domain marked 1, 2, 20, 3, 4, 40 are 0.76, 0.78, 1.33, 0.72,
1.31, and 1:32 �m2, respectively. (b) STM image of Co islands
on Pt(111), with epitaxial mismatch strain of 9% [7]. The three
arms of Co islands are 3–5 nm wide and up to 250 nm long.
They run perpendicular to the close-packed h110i orientations.
Reproduced with the permission of the authors [7].
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studies [6] have considered the equilibrium shape of iso-
lated compact domains [1 in Fig. 1(a)], other extended
shapes with smaller triangular domains connected at their
corners [refer to Fig. 1(a)] can also be held without any
noticeable change in shape for over 20 min. Furthermore,
the sizes of many of these topologically distinct shapes
with different numbers of connected triangles are nearly
equal. This raises the question as to whether there is a
unique ‘‘equilibrium’’ shape for a given domain size.
Unlike the domains on Si(111) surfaces, strained Co is-
lands on Pt(111) [7] adopt an entirely different shape.
While the domain boundaries in the former case are ori-
ented along the close-packed h110i directions, highly elon-
gated arms of the Co islands run perpendicular to these
low-energy orientations. How can we understand these
distinct shapes within a unified framework? In what fol-
lows, we show that all these shapes are obtained from a
simple functional form of the boundary energy as the
degree of anisotropy in boundary energy is allowed to vary.

First, we consider the equilibrium shapes of compact
domains for the boundary energy, ���� � �0�1� ��1�
cos3��	, where � denotes the angle made by the outward
normal to the boundary with the horizontal axis and � is
the parameter that determines the degree of anisotropy. The
total energy of a strained domain can be written as

 E�A� �
Z
s
����ds�
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Z
s

n�s� 
 u�s�ds; (1)

where the integrals are taken over the perimeter of the do-
main, �� is the difference in the surface stresses or the
product of the mismatch stress and the height of the islands
in the case of coexisting domains or strained monolayer is-
lands, respectively, and u denotes the elastic displacement

fields. Using typical values �0 � 15:48 meV=nm, C0�
�1��2���2=��Y��2:853 meV=nm (where � is Pois-
son’s ratio and Y is Young’s modulus) and an elastic cutoff
parameter � � 0:1 nm [8], we have obtained the equilib-
rium shapes by minimizing the total energy using a se-
quential quadratic programming method [9]. The com-
puted shapes for three different values of � are shown in
Fig. 2.

With increasing domain size, the domain boundaries
continuously bend towards the center, so that large domain
boundaries acquire concave boundaries as reported in
Ref. [6]. When the anisotropy becomes smaller, it becomes
easier for the boundaries to bend as this leads to efficient
relaxation of strain. For the case � � 0:025, even at small
sizes, the boundaries curve inward to the fullest possible
extent until they acquire straight and narrow arms shown in
Fig. 2(b). Unlike the shapes for large anisotropy in
Fig. 2(a), with increasing size, domains in this case show
shape invariant growth with constant widths of the side
arms. By analytical minimization of the total energy, the
width w can be written in a closed form as

 w � 2a exp
�
��0

C0
�

1

1� �

�
; (2)

where a � � exp��0=C0�. The widths of the numerically
computed shapes in Fig. 2(b) closely agree with this
expression.

On a (111) surface the orientations of the six sides of the
long arms in Fig. 2(b) correspond to h112i directions—the
boundary energy of these orientations is intermediate be-
tween the three low-energy h110i orientations (A–C) and
the other h110i orientations (D–F) which have the largest
boundary energy. The elongated shape therefore involves a
significant compromise between the boundary energy
(which increases by over 200% relative to the classic
Wulff shape) and the relaxation of the elastic energy.
This shape predicted by our analysis agrees well with the
observed elongation of the arms (that run along h112i) for
strained monolayer Co islands on Pt(111) in Fig. 1(b).
Since the mismatch strain in this material system is large
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FIG. 2 (color online). Equilibrium shapes of domains on (111)
surfaces given for three different values of the anisotropy pa-
rameter, �. The domains marked with the * are in metastable
equilibrium. The inset in (b) shows the plot of ���� with three
minima and three maxima labeled A–C and D–F, respectively,
and six intermediate orientations labeled 1–6. These orientations
are also shown in the equilibrium shapes in (b).
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FIG. 3 (color online). Energy per unit area for: (a) domain
shapes on a cubic (111) surface given in Fig. 2, and (b) square
and rectangular domains on a (001) surface [4]. This quantity
attains minimum for the compact domain of size 0:2 �m2 on the
(111) surfaces, while elongated nanowire shape has smaller
minimum energy per unit area on the (001) surface.
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(9.7%), other strain relaxation mechanisms such as defect
or dislocation formation have also been observed at very
large domain sizes [7]; further quantitative work is needed
to obtain the relative importance of the different relaxation
mechanisms.

It is evident from Fig. 2 that a wider range of shapes are
obtained on (111) surfaces compared to (001) surfaces [2–
4]. However, the most significant difference between the
two cases relates to the behavior of energy per unit area of
the strain-stabilized shapes as plotted in Fig. 3. This quan-
tity is minimum for the infinitely long nanowire shape for
(001) surfaces but the minimum is located at a finite size
� 0:2 �m2 for domains on (111) surfaces. Since the opti-
mum size is nearly independent of anisotropy in ����, it
can be estimated using the closed form expression for the
total energy of a triangle as

 Ao � a2�2 exp�2�; (3)

where � � 1:97 exp�1=�1� ��	. For the parameters used
in our analysis Ao � 0:18 �m2, which is close to the
values obtained for all the three cases plotted in Fig. 3.
This analysis shows that on (111) surfaces, any domain
larger than the optimum size Ao is metastable—the total
energy of this domain can be lowered by breaking it up into
N � A=Ao smaller domains. As we show below, this pro-
cess however involves a large energy barrier and therefore
the shapes marked by the * in Fig. 2 remain trapped in
metastable wells. In distinct contrast, the elongated nano-
wire shape on (001) surfaces corresponds to the global
minimum of the total energy.

If an isolated domain has to break up into smaller
domains, notches on the boundary have to first nucleate
and grow. Here we focus attention on the energy land-
scapes (Fig. 4) for the growth of notches on straight tri-
angles since the key features apply equally well to domains
with curved boundaries. For small domains (A< 2Ao),
notches never grow as this always leads to an increase in
the total energy of the domain. However, for larger do-
mains, it becomes favorable for a notch to grow [Fig. 4(a)],
but only after the notch has reached a critical size. In other
words, the notch has to overcome a barrier before it can
access a new minimum with two connected triangles. The
evolution of the domain shapes along the ‘‘saddle path’’ for
this case is shown in Fig. 4(a). When the domains become
even larger, two notches can grow and lead to a new
minimum consisting of three connected triangles as shown
in Fig. 4(b). However, the domain in this case can also
adopt a metastable configuration with two connected tri-
angles. The saddle paths for moving between the different
wells in the energy landscape are given in the inset in
Fig. 4(b).

Although the total free energy of the connected domains
can be further lowered by breaking them into a number of
widely separated domains of area Ao, the domains in
experiments [Fig. 1(a)] as well as in our calculations
(Fig. 4) always stay connected at the corners. The strong
repulsive elastic interactions between the approaching
groove and the straight edge prevents the individual do-
mains from pinching off from the larger connected struc-
ture. The equilibrium distance between the V groove and
the straight edges obtained from our calculations (50 nm)
compares favorably with distances (�20–60 nm) found in
experiments. Since repulsive long-range interactions be-
tween the approaching boundaries will always prevent
pinching, the observed behavior should be generic (for
example, see Ref. [10]), but is particularly exaggerated in
our experiments because of the small thermal fluctuation
amplitudes.

A phase diagram that enumerates the most favorable
shapes as a function of the normalized domain size and
anisotropy is given in Fig. 5(a). We have obtained this
phase diagram by comparing the total energy of shapes
with different numbers of notches; this diagram is a gen-
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FIG. 4 (color online). Energy landscapes for the growth of
notches plotted as a function of their location (s1) and lengths
(s2): (a) One notch on a domain with area 0:6 �m2, and (b) Two
notches on a domain with area 1:0 �m2. Insets show the evolu-
tion of domain shapes and the corresponding energies along
saddle paths. Material parameters used in the calculations, �0 �
15:48 meV=nm, C0 � 2:853 meV=nm correspond to the (7� 7)
domains on Si(111).
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eralization of the landscapes in Fig. 4 for shapes with finite
anisotropy in����. Also, as in Fig. 4, while the shapes with
N � A=Ao connected domains is most favorable for a
given area, A, other shapes with fewer connected-domains
also remain metastable at all sizes. Transitions between the
optimal shapes and the metastable shapes involves energy
barriers, which are of the order of 0.3–0.7 eV for typical
parameters used in our calculations. Clearly, these barriers
can never be overcome by thermal fluctuations (<0:12 eV
in most experiments). Thus, the final shape adopted by a
domain will depend on the number of notches it possessed
prior to equilibration. In particular, if there are no notches
in the shape, very large isolated domains can remain
trapped in metastable shapes given in the phase diagram
in Fig. 5(b). Next, we show that these predictions are in
agreement with experimental observations on Si(111).

In the case of in Fig. 1(a), the domains were first grown
under nonequilibrium conditions that lead to the formation
of different number of notches on each domain [11]. The
final shapes in Fig. 1(a) were obtained by annealing the

nonequilibrium shapes at 864 �C. According to our analy-
sis, during annealing, depending on the number of notches
in the initial shape, the domain should evolve to the closest
well in the energy landscape and remain trapped there
irrespective of its size. This is indeed what is seen in
experiment: while the domains marked 1, 2, and 3 in
Fig. 1(a) are all of the same size, A � 0:75 �m2, they
correspond to a compact, two-connected and three-
connected shapes, respectively. Similarly for A �
1:3 �m2, we find a shape with two connected domains
(20) as well as two shapes with four-connected domains (4
and 40). These observations are therefore in complete
agreement with the energy landscapes and phase diagrams
shown in Figs. 4 and 5, respectively.

In summary, we have shown that crystal symmetry plays
a very important role in determining the energy landscapes
for strained domains. We find significant qualitative differ-
ences in the equilibrium shapes on commonly used cubic
(001) and (111) surfaces. While the global minimizer in the
former case for a given area is a nanowire, in the latter case,
it is an array of isolated domains of an optimum size that
are widely separated from each other. We have shown here
that this configuration is never achieved due to metastabil-
ity induced by strain. We have presented morphological
phase diagrams that predict the size dependence of various
metastable shapes that have been observed in experiments.
More insights into the interplay between strain and crys-
talline anisotropy can be gained by extending our analysis
to equilibrium shapes on low-symmetry, high-index crystal
surfaces.
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