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Coiling of Elastic Ropes
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A rope falling onto a solid surface typically forms a series of regular coils. Here, we study this
phenomenon using laboratory experiments (with cotton threads and softened spaghetti) and an asymptotic
“slender-rope”” numerical model. The excellent agreement between the two with no adjustable parameters
allows us to determine a complete phase diagram for elastic coiling comprising three basic regimes
involving different force balances (elastic, gravitational, and inertial) together with resonant “whirling
string” and ‘“whirling shaft” eigenmodes in the inertial regime.
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All mountaineers know that a rope held vertically and
dropped onto a surface will often coil spontaneously. The
initial stage of the coiling is just the buckling of the rope
under its own weight. In general, when a solid material
buckles, the subsequent nonlinear evolution of the insta-
bility can occur in two ways. If the material is very stiff, it
will break. If however it is sufficiently flexible, the struc-
ture will undergo a large finite-amplitude deformation
whose dynamics are essentially nonlinear. In many cases,
the nonlinearity is due to the breakdown at large strain of
an initially linear relation between stress and displacement,
either because the quadratic terms in the elastic strain
tensor [1] become significant or because the material no
longer satisfies Hooke’s law. Much progress has been made
recently in understanding these sorts of nonlinear behavior
in structures such as crumpled sheets of paper [2,3] and
crumpled wires [4]. However, nonlinear behavior can also
occur even in a linearly elastic material if the final de-
formed shape of the structure is far from the initial state.
The classic example of such ‘““geometrical”” nonlinearity is
the large deformation of elastic rods described by the
Kirchhoff equations [5], examples of which include the
kinking of telephone cables on the ocean floor [6], handed-
ness reversal in the coiled tendrils of climbing plants [7],
the supercoiling of DNA strands [8], and the steady rope
coiling that we study here.

Much work has been done recently on the analogous
phenomenon of the coiling of a “liquid rope” such as a
thread of honey falling onto toast. Experimental and theo-
retical studies [9—15] have revealed a remarkable dynami-
cal richness in this instability, which exhibits four different
regimes depending on the relative importance of viscous
forces, gravity, and inertia, as well as multistable behavior
in a range of fall heights. By contrast, elastic rope coiling
has to our knowledge never been studied experimentally.
The sole theoretical investigation known to us is [16], who
solved numerically a set of Kirchhoff-type equations for a
steadily coiling rope and correctly identified the two re-
gimes that involve no inertia. However, the inertial terms in
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the equations of [16] all have the wrong sign, and so the
corresponding numerical solutions are incorrect.

In this Letter, we present the first experiments on elastic
rope coiling together with a detailed numerical study. The
two agree remarkably well without any adjustable parame-
ter, allowing us to determine a complete phase diagram for
coiling as a function of the fall height H and the feeding
velocity U. We find a surprisingly complex dynamics
involving three distinct regimes characterized by different
force balances (elastic, gravitational, and inertial) as well
as two sets of resonant modes within the inertial regime.

Experimental procedure.—We used two different ex-
perimental setups to observe coiling over wide ranges of
values of H and U. In the first setup, ordinary rope or
sewing thread was wound onto a wheel, which was then
rotated by an electric motor to feed the rope down through
a hole at a rate U = 0.3-200 cms™! onto a glass plate or
thick piece of paper 2-200 cm below. We eliminated
preexisting curvature in the ropes either by ironing them
or by wetting them with water and suspending them with a
weight attached to the lower end. In a second setup, used
for very low fall heights, pieces of spaghetti 24—26 cm
long that had been presoftened in water were ejected
downward from a vertical glass tube either using a syringe
(for higher values of U) or by pushing with a rod (for lower
U).

The physical properties of the ropes used are listed in
Table I. The diameter d was measured with a digital
vernier. The mass per unit length A was measured by
weighing a given length of rope. The Young’s modulus E
was determined by measuring (to within 0.05 mm using a
digital vernier) the downward deflection y of the free ends
of horizontally clamped pieces of rope with different
lengths L, and then using least-squares regression against
the analytical prediction y = 8AgL*/mEd* of the linear
theory of elastic rods [17] to infer E to within £20%. We
verified that the deflection did not depend on the orienta-
tion of the rope about its axis, implying that natural curva-
ture had been successfully eliminated.
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TABLE I. Physical properties of experimental ropes.
Rope  Composition d (mm) A (kgm™ 1) E (Pa)
1 Polyester thread 1.5 30X 107% 1.5 X 10°
2 Cotton thread 0.5 1.1 X107* 2.9 x 100
3 Cotton thread 0.5 1.1 X107* 1.5%X 107
4 Thick cotton thread 1.0 24X107% 82 X% 10°
5  Cotton thread 075 291073 85Xx10°
6  Spaghetti no. 5 1.7 2.7X1073 6.9 X 10°
7  Spaghetti no. 7 2.5 6X1073 52x10*

We measured U by frame counting on movies taken
with a webcam (=15 framess™ ') or a rapid CCD camera
(=1000 frames s~ !). The coil radius R was measured (to
within 0.2 mm) either with a vernier or by counting pixels
on photographs. Small fall heights H were measured to
within 0.2 mm from photographs, and larger heights to
within 1 mm using a ruler.

Experimental observations.—For most of the ropes
listed in Table I, we performed a first series of experiments
varying H with U fixed, and a second varying U with H
fixed. Figure 1 shows some of the coiling configurations
observed, and Fig. 2 shows a selection of experimental
measurements of R as a function of H and U. Two different
types of behavior are seen, depending on whether the
coiling object is spaghetti fed from very low heights
(=1.3 cm in Fig. 2) or thread fed from a height of at least
several cm. For the spaghetti [Fig. 1(a); open squares in
Fig. 2], R increases with H [Fig. 2(a)] but is independent of
U [Fig. 2(b)]. For threads, R also increases with height
[Fig. 2(a), circles and solid squares]. However, the depen-
dence on U is more complicated: R is first nearly indepen-
dent of U, then increases, then decreases by a factor =2,
and finally increases again [Fig. 2(b), open and solid
circles]. Moreover, at high feeding velocities, the thread
sometimes becomes unstable to an unsteady ‘“‘figure of
eight* mode [Fig. 1(c)] that can persist as long as the
length of the thread permits, in contrast to the transient
nature of such patterns in liquid rope coiling [13,15].

FIG. 1 (color online).

Typical coiling configurations for ropes
whose physical properties are listed in Table I. The numbers on
the scale in each panel indicate cm. (a) rope 5, H = 1.2 cm, U =
26 cms™!; (b) rope 4, H = 30 cm, U = 2.3 cms™!; (c) rope 4,
H=80cm, U= 100 cms~!.

Slender-rope model.—The diversity of behavior shown
in Fig. 2 can be understood with the help of a numerical
model for the motion under gravity of a slender elastic rope
with inertia. As noted by [16], coiling is steady when
viewed from a reference frame that rotates with the angular
velocity  of the rope’s contact point with the surface. The
equations we used to describe coiling in this frame are
those of [16], but with the correct signs of the centrifugal
acceleration € X ( X x), the Coriolis acceleration
2Q X U, and the acceleration UU' in the corotating frame,
where x(s) is the position of the rope’s axis as a function of
arclength s along it, U = Uds, d;(s) = x' is the unit vector
tangent to the axis, and primes denote d/ds. We also used a
corrected expression I = 7d*/64 for the moment of inertia
of the rope’s cross-section about a diameter. The model
equations involve 12 dependent variables: x(s) (3 compo-
nents); four Euler parameters that describe the orientation
of alocal basis comprising d; and two material unit vectors
d,(s) and d,(s) normal to the axis; the curvatures of the
axis about d; and d,, respectively; and the three compo-
nents of the force acting on the rope’s cross-section. The
first-order ODEs satisfied by these variables comprise
seven purely geometrical equations; three equations of
global (integrated across the rope) force balance in the
directions d;; and two equations of global torque balance
about the directions d; and d,. We solved the resulting
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FIG. 2. Experimental measurements of the coil radius R. (a) R
as a function of H for rope 6 with U = 2 cms™! (open squares),
rope 1 with U = 10 cms™! (solid squares), and rope 2 with U =
10 cms™! (circles). (b) R as a function of U for rope 6 with H =
1.3 cm (squares), rope 5 with H = 50 cm (solid circles), and
rope 2 with H = 100 cm (open circles).
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twelfth-order two-point boundary-value problem numeri-
cally using the method of [16].

Because the numerics predict the existence of reso-
nant eigenmodes (see below), we present the results in
terms of the coiling frequency () = U/R rather than
the radius R. Nondimensionalization of the model equa-
tions shows that the dimensionless frequency 0=
Q(d*E/pg*)'/® depends only on the dimensionless height
H = H(pg/d*E)"/? and the dimensionless feeding veloc-
ity U = U(p/d*g*E)"/®. Figure 3 shows numerically cal-
culated curves of Q(A) for several values of U. Coiling can
occur in three regimes, depending on how the elastic
bending forces in the ‘““coil”’ portion of the rope are bal-
anced. Per unit rope length, the magnitudes of the elastic
(E), gravitational (G), and inertial (/) forces are

Fgp~ Ed*R™3 F; ~ pd*U’R™ .

(1)

Fg ~ pgd?,

In the first or “elastic’’ regime, both gravity and inertia are
negligible (Fg, F; << Fg) and the net elastic force acting
on every element of the rope is zero. This corresponds to a
standard situation in elasticity theory where the deforma-
tion of a rod is determined solely by the conditions im-
posed at its ends. A second, ‘““gravitational’’ regime occurs
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FIG. 3. Main portion: Dimensionless coiling frequency 0=
QO(d*E/pg*)V/® as a function of dimensionless fall height A =
H(pg/d*E)'/? for several values of the dimensionless feeding
velocity U = U(p/d*g*E)"/®. The curves for U = 1.0 continue
indefinitely to the right (not shown). Portions of the curves
labeled E and G and the horizontal bars labeled I correspond
to the frequencies (2). The first six “whirling string and
“whirling shaft* eigenfrequencies are indicated by dotted and
dashed lines, respectively. Inset: Phase diagram for coiling as a
function of A and U. The frequency (A, U) is multivalued
everywhere above the solid line. The vertical dashed line in-
dicates the smooth transition between elastic (£) and gravita-
tional (G) coiling. The dashed line in the inertial (/) portion of
the diagram indicates a smooth transition between whirling
string and whirling shaft modes.

when inertia is negligible and the elastic forces are bal-
anced by gravity (Fg = Fy > F;). Finally, “inertial‘
coiling occurs when gravity is negligible and the elastic
forces are balanced by inertia (F; = Fy > F). The cor-
responding coiling frequencies g, (); and (); can be
found by estimating R and then using the identity () =
U/R. For elastic coiling, R ~ H. For gravitational and
inertial coiling, R is obtained from the force balances
F; = Fg and F; = Fpg, respectively. The results are

Qp~UH™!, O ~ Ulpg/d*E)'3,

2)
Q, ~ U(p/d*E)"/2.

The scaling law for {5 corresponds to the portions of the
curves with slope = —1 (labeled E) in the main part of
Fig. 3, and that for () (equivalent to Eqn. 2.4 of [16])
corresponds to the nearly horizontal portions (labeled G).
Q) also depends on H, but in a way that is too weak to be
determined by scaling analysis. Finally, the scaling law for
), corresponds to the horizontal lines labeled 1.

Figure 3 reveals surprising complexity in the inertial
regime, where Q(H) oscillates about the horizontal lines
corresponding to );. This behavior reflects the presence of
resonant eigenmodes in the nearly vertical upper portion
(“tail’”) of the rope that are excited whenever one of its
natural frequencies is close to the frequency {2, set by the
coil at the bottom. These modes have two limiting forms.
In the first limit, represented, e.g., by the rightmost portion
of the curve Q (&) for U = 1.0in Fig. 3, the tail behaves as
a steadily whirling “string*“ (i.e., a rope with negligible
bending resistance) under gravity. Its eigenmodes are iden-
tical to those of a hanging chain, with eigenfrequencies
QN that satisfy Jo(28) = 0, where 8 = Q3""¢(H/g)!/
and Jj, is the Bessel function of the first kind of order zero.
The first six eigenfrequencies (""¢ are shown by the
dotted lines with slope —1/2 in Fig. 3. For n = 5, these

coincide closely with the segments of the curve Q(FI) for
U = 1.0. The gravest (n = 1) whirling string mode is the
limiting form of the G mode as H — 0.

In the second limit, the tail behaves as a ‘““whirling
shaft” ([17], § 286) in which the centrifugal force is bal-
anced by elastic bending forces. The lateral displacement
r(s) of the tail now satisfies (Ed?/16p)r"" = Q?r. Solving
this subject to the end conditions r(0) = r'(0)=0
(clamped) and r"(H) = r"'(H) = 0 (free), we find that
the eigenfrequencies Q5" satisfy cospcoshp = —1,
where p? = 4H2(p/d*E)'/2Qshft The first six of these
eigenfrequencies are shown on Fig. 3 by dashed lines
with slope —2. For n = 5, they align closely with the
segments of the curves Q(A) for U = 3.16 and 10.

The phase diagram implied by the curves Q(A, U)
appears as an inset in Fig. 3. The (A, U)-plane is divided
into three regions representing elastic (E), gravitational
(G), and inertial (I) coiling. The inertial region in turn
comprises two parts corresponding to “whirling string”
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FIG. 4. Comparison of experimentally measured (circles) and
numerically calculated (lines) coiling frequencies. The dimen-
sionless frequency Q, height A, and feeding velocity U are
defined in the text. The symbols E, G, and [ indicate elastic,
gravitational, and inertial coiling, respectively, and the subscripts
“string”’ and “‘shaft” indicate the dominant resonant mode type
in the portion of the inertial regime in question. Error bars
(omitted) reflecting the composite errors of ), H, U, A, d, and
E rarely exceed twice the symbol size. (a) Rope 7 with U =
2 cms™!; (b) Rope 3 with U = 10 cms™!; (c) Rope 3 with H =
30 cm; (d) Rope 6 with H = 1.3 cm.

and “whirling shaft” resonant modes, with a smooth tran-
sition between them.

Comparison with experiment and with liquid rope coil-
ing.—Figure 4 shows the dimensionless coiling frequen-
cies measured in four series of experiments (circles),
together with the predictions of the numerical model for
the same values of H, U, d, A, and E (lines.) Three regimes
(E, G, and Ip,) are clearly captured by the experiments,
and the fourth (Zg,,¢) is represented by the topmost circle in
Fig. 4(d). The excellent agreement between the numerics
and the experiments with no adjustable parameters is
strong evidence for the validity of the scaling laws and
the phase diagram presented above. In terms of the original
measurements of R vs. U [Fig. 2(b)], the constant radius at
low U corresponds to the G regime, the subsequent in-
crease to the transition between G and [ coiling, and the
final decrease to the I regime.

In closing, we compare the behavior of coiling elastic
and liquid “‘ropes.” An obvious difference is that a falling
liquid rope is stretched by gravity so that its diameter
decreases downward from the extrusion point. Allowing
for this effect, however, one finds that liquid rope coiling

has ““viscous” and ‘“‘gravitational”’ regimes that are exactly
analogous to the elastic and gravitational coiling regimes,
respectively, of an elastic rope [11,12]. Matters are more
complicated if inertia is significant. Ribe ef al. [13] showed
experimentally and theoretically that liquid ropes can sup-
port “whirling string” resonant modes analogous to those
documented here, but with eigenfrequencies modified by
the rope’s nonuniform diameter. By contrast, there is no
experimental or numerical evidence that ‘““whirling shaft”
eigenmodes can exist on liquid ropes. But even the whirl-
ing string modes on a liquid rope disappear if the fall height
is sufficiently great, at which point coiling occurs in a
“pure” inertial regime identified by [10]. This regime
has no equivalent in an elastic rope, for which the resonant
modes seen in Fig. 3 appear to persist to arbitrarily large
heights.
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