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The sine-Gordon model with a variable mass (VMSG) appears in many physical systems, ranging from
the current through a nonuniform Josephson junction to DNA-promoter dynamics. Such models are
usually nonintegrable with solutions found numerically or perturbatively. We construct a class of VMSG
models, integrable at both the classical and the quantum levels with exact soliton solutions, which can
accelerate and change their shape, width, and amplitude simulating realistic inhomogeneous systems at
certain limits.
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The sine-Gordon (SG) model enjoys a special status
among nonlinear integrable systems for its inherent rich-
ness and wide range of applications in different fields [1–
9]. Apart from the fascinating properties of an integrable
system, the SG model exhibits relativistic invariance and
integer-valued topological charge represented by solutions
like kink, antikink, breather, etc. [10], together with the
quantum integrability described by the Yang-Baxter equa-
tion, which for the SG leads to quantum algebra suq�2�
[11,12].

Solitons in the standard SG model, as in other integrable
systems, move with a constant velocity and shape. In
realistic situations, however, because of the inhomogeneity
of the media solitons may exhibit more complex motion
with changing velocity and shape [4,6,7], which may be
used also as a desirable effect for fast transport, fast
communication, or even for a possible soliton gun [8]. In
particular, inhomogeneity can lead to SG models with a
variable mass (VMSG) in describing the fluxon or semi-
fluxon dynamics in a Josephson junction (JJ) with impurity
or nonuniform critical current [2,6], spin wave propagation
with variable interaction strength [5], DNA-promoter dy-
namics in nonuniform background, etc. However, such
inhomogeneities usually destroy the most cherishable
property of the SG model, i.e., its integrability, and hence
the solutions can be extracted only numerically or at best
perturbatively [2,4,6,7].

We observe that, though the integrability of the SG
model is spoiled by a variable mass, or a variable velocity,
it can be restored if both of them vary simultaneously
following certain rules. Therefore, we can construct a
VMSG model, integrable at the classical and the quantum
levels, allowing analytic soliton solutions. Such exact sol-
itons nevertheless show intriguing accelerated motion with
changing shape, amplitude, and width, simulating thus
realistic inhomogeneous systems [4,6,7] and describing
them analytically at certain limits [Figs. 1(b)–1(d)].

To clarify our strategy we focus on the linear spectral
problem of the SG model: �x�x; �� � U��; x���x; ��,
�t�x; �� � V��; x���x; ��, with its Lax pair [13]:U � i

4 �

��ut�3 �mk1 cosu2�
2 �mk0 sinu2�

1�, and V � i
4 �

��ux�
3 �mk0 cosu2�

2 �mk1 sinu2�
1�, where k0��� �

2�� 1
2� , k1��� � 2�� 1

2� , with spectral parameter �.
Compatibility condition �xt � �tx or the related flatness
condition leads to the SG equation, for constant mass m0

and spectral parameter �0. Recall that in the inverse scat-
tering (IS) method solitons are obtained at discrete spec-
trum �n, n � 1; 2; . . . ; N, with velocities of SG solitons
linked to these values of the spectral parameter. Therefore
variable soliton velocity should have a variable spectral
parameter �, which alone, however, violates the compati-
bility condition. Fortunately by making mass m also a
space-time dependent variable, we can get the VMSG
equation

 utt � uxx �m
2�x; t� sinu � 0; (1)

with the constraint: �k0m�t � �mk1�x � 0, �k1m�t �
�mk0�x � 0, which can be reduced to two free field equa-
tions:
 

�tt � �xx � 0; �tt � �xx � 0;

for � � lnm�x; t�; � � ln��x; t�:
(2)

Note that the set of Eqs. (1) and (2) is a new integrable
relativistic system, generalizing SG equation, and a reduc-
tion (at the free field limit of spectral dilatation field �) of
the conformal affine Toda model [14]. However, since we
are interested here in an application to physically relevant
inhomogeneous models, we would consider �, � as given
inhomogeneous functions by restricting to particular solu-
tions for variable mass and spectral parameters:

 m�x; t� � m0f�f�; ��x; t� � �0
f�
f�

; (3)

with f� arbitrary smooth functions of x� � x� t, respec-
tively. Thus, we obtain an integrable SG Eq. (1) with
variable mass m�x; t� � m0f�f�. Note that because of
the explicit space-time dependent coefficient, it is no lon-
ger a relativistic and translational invariant model.
However, if we demand such invariance, we simply get
back the constant mass SG model, as shown in [15]. We
can control massm�x; t� in the VMSG model (1) by choos-
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ing suitably the inhomogeneity functions f� for different
physical situations, showing a variety of soliton dynamics
as in Figs. 1(a)–1(d).

For obtaining exact solutions of the VMSG model (1),
we can apply well known methods designed for integrable
systems [10], e.g., Hirota’s bilinearization and the inverse-
scattering (IS) formalism. Hirota’s method for soliton so-
lution for the standard SG equation is given through a
cleverly chosen ansatz u � �2i lng�g� , with g� as conjugate
functions, which converts the SG equation into a bilinear
form, admitting solution for g� as expansion in plane
waves. For SG model (1) with variable mass and velocity
the same ansatz seems to work, only the plane waves
should be replaced by their generalized form: g�n� � cn

�n
�

e�i=2��X��n;x;t��T��n;x;t�	, where X��n;x;t��
R
xdx0m�x0;t��

k1��n;x0;t�, T��n; x; t� �
R
t dt0m�x; t0�k0��n; x; t0�. This

gives the exact soliton solutions of (1) through the expan-
sion: g� � 1� g�1�, for 1-kink and g� � 1� �g�1� �
g�2�� � s�12 ��1 � �2�	g�1�g�2�, �a �

i
2 e

�a , a � 1, 2 for
2-kink, etc., with the scattering amplitude s��� � tanh2�,
while for �2 � ��
1 � �ei� one gets the kink-antikink
bound state (breather solution).

Similarly, we can apply the IS formalism [10] to (1), for
which the crucial step is to use the analyticity of Jost
solutions �, based on their behavior at �! �1. This
holds equally for the inhomogeneous extension of the SG
model, where the asymptotic plane waves should again be
replaced by their generalized form. The 1-kink soliton with
�1 � i� can be obtained explicitly, either from the Hirota’s

or from the IS method as

 u�4tan�1�e� �; ��
i
2
�X�i�;x;t��T�i�;x;t�	; (4)

with variable soliton velocity vs�x; t� � �
dx
dt �

k1��;x;t�
k0��;x;t�

.
Kink solution (4) gives a localized soliton for sinu2 �

1
cosh� , which are actually shown in Fig. 1.

To see the effect of various inhomogeneities on the
soliton dynamics, we consider some concrete integrable
cases. Notice that variable mass (i) m0�x2 � t2�n, invariant
under relativistic motion, yields (for n � 1) the exact kink
solution (4) with � � m

3 �2��x� t�
3 � 1

2� �x� t�
3	, the

evolution of the corresponding soliton is depicted in
Fig. 1(a). The intriguing change in the soliton shape, width,
and velocity during its motion is clearly seen. Position-
dependent mass can be achieved in this case at t! 0 and
therefore a phenomenon like fluxon propagation through JJ
with local defect m0x

2 may be described with the above
analytic soliton solution at a short time interval limit, as
shown in Fig. 1(b).

Other forms of integrable VMSG equations can be ob-
tained for mass (ii)

���
2
p
m0cos�q�x� t�, � being an arbi-

trary parameter. We derive for the first case (with � � 1)
kink solution (4) with � � m0�k0���x� k1���t�

1
4q� �

sin2q�x� t�	, having soliton velocity vs � m0d�k1��� �
1

2� cos2q�x� t�	 and width d � fm0�k0��� �
1

2� �

cos2q�x� t�	g�1, both of which oscillate periodically in
space-time, as evident from Fig. 1(c). Notice that variable
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FIG. 1 (color online). Exact soliton solutions: s � sinu2 �x; t� of the integrable VMSG equation with variable mass m.
(a) m � m0�x

2 � t2� having an intriguing flattening of the soliton at the center. (b) Short time interval limit of the above soliton
showing the flattening prominently. (c) m � 2m0 cosq�x� t� with oscillatory behavior of the soliton. (d) Static soliton in the zone
(x � 1:2) with m � const and initially static soliton in the zone (at x � 4:8) with variable mass: m � m0 exp��x� � m�1� �x�, with
� � 0:1 moves backward with acceleration, resembling soliton propagation in an inactive or active promoter region in a DNA chain.

PRL 99, 154101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
12 OCTOBER 2007

154101-2



mass of this type is particularly interesting, since it can
describe an important physical situation, namely, the SG
equation parametrically driven by a plane wave [16].

One can get a similar integrable case with mass
(iii) m0�2 cosq�x� t� cosq�x� t���=2, which at short time
interval limit (t! 0) gives � m�x� � ~m0�cosqx��, while
for evolution limited to a small space interval (x! 0): �
m�t� � ~m0�cosqt��. Recall that a physically motivated spin
chain with coupling constant changing periodically in
space can be described by a VMSG with mass m�x� �
m0�cosqx��, where � � 1

2�K , with K  1
2 being an impor-

tant parameter of the system [5]. Similarly, a real oscillator
chain pumped by an alternating current [17] can be linked
to a VMSG with mass m�t� � �cosqt�1=2. Therefore, we
may conclude that the analytic solution of our VMSG
equation can describe the inhomogeneous spin wave dy-
namics [5] or evolution of forced oscillators [17], at least at
short time or space interval limit. Alternatively, this real-
istic spin (or oscillator) model can be tuned to the inte-
grable VMSG with mass m0cos�q�x� t�, by making its
coupling strength oscillate periodically also in time (or
space).

In most physical situations the inhomogeneity of the
media leads to the VMSG equation, with only position-
dependent mass m�x�. Therefore we explore to find, when
such equations can be integrable in the entire space-time
and conclude from our result (3), that the VMSG becomes
integrable only for the space-dependent mass
(iv) m�x� � m0e

��x�x0� with � � const, which explains
also why most of the realistic VMSG models having a
different position-dependent mass (e.g., [5]) turn out to
be nonintegrable systems. Exact kink solution for the
integrable m�x� is obtained from (4) as u � 4tan�1�e� �,
� � 1

� k0�t�m�x�, m�x� � exp���x� x0��, k0�t� �

cosh��� ��t� t0��. The corresponding soliton velocity
and width are vs � tanh��� ��t� t0��, and d �
�m�x�k0�t��

�1, showing how the soliton shape changes
and how it accelerates, decelerates, or can exhibit a prop-
erty similar to boomeron [18]. This scenario is close to the
predicted behavior of solitons in the dynamically active
promoter zone of the T7A1 DNA [4]. Notice that for � > 0,
since m�1� � 1, m��1� � 0, the kink solution yields
u�1� � 2	, u��1� � 	, and hence corresponds to the
topological charge Q � 1

2	 �u�1� � u��1�	 �
1
2 . This in-

triguing fact might serve as an integrable theory for the
semifluxon, observed in unconventional JJ [19].

At �! 0: � ! �0 � m0�k0�x� x0� � k1�t� t0�	 and
the standard SG soliton is recovered. Therefore we can
access the solitonic behavior in realistic models with any
mass deviation from its constant value, with a high degree
of accuracy, by approximating through expansion in
powers of �. Figure 1(d) shows that a static soliton remains
static, when placed in a region with constant mass while an
initially static soliton can move with accelerated (or decel-
erated) motion, when placed in a zone with variable mass,

resembling closely the scenario of the VMSG soliton in the
DNA chain, which with zero initial velocity in an inactive
region (with constant mass due to almost uniform back-
ground of two types of base pairs) remains static, while in
the active promoter region with variable mass [due to a
significant difference in the number of lighter (A-T) and
heavier (G-C) base pairs] the same static soliton can ac-
quire rich accelerated motion [4].

Finally, we intend to show that the integrable VMSG
model constructed here can be raised to the quantum level
and the algebraic Bethe ansatz (ABA) developed for the
constant mass SG model [11] can be adopted successfully
for it. Quantum lattice regularized SG matrix Lax operator
Uj��;Sj; m�, j � 1; 2; . . . ; L involves quantum-spin opera-
tors S3

j �uj�, S
�
j �uj; pj; m�, expressed in canonical operators

uj, pj � _uj, and the mass parameter m, which should be
generalized now to site-dependent parameter mj [20]. Note
that the trigonometric R��
� matrix associated with our
quantum integrable VMSG model remains the same, since
it depends on the ratio of two spectral parameters, in which
x, t dependence enters, as seen from (3), only multiplica-
tively and therefore gets canceled. Moreover, the Yang-
Baxter equation being a local algebra (at each lattice site
j), it is not affected by inhomogeneity and yields the same
quantum algebra suq�2�, only with the replacement of
constant m by a site-dependent function mj in its structure

constant: �S�j ; S
�
k 	 � �jkmj

sin�2S3
j

sin� .
The aim of ABA is to solve exactly the eigenvalue

problem of trT��� � A��� �D���, with T��� �
Q
jUj���, generating all conserved operators including

the Hamiltonian, with the eigenstates: j�1; . . . ; �ni �Qn
j B��j�j0i. T12��� � B��� acts as creation operator,

while T21��� � C��� as destruction operator annihilating
the pseudovacuum: C���j0i � 0. Following closely [11],
but generalizing for the site-dependent mass mj, we can

construct the local pseudovacuum j0i �
Q
jj�

�2�
j i, a cru-

cial step in ABA, by combining the action of a consecutive
pair of Lax operators: UjUj�1j0i [21]. Consequently the
vacuum eigenvalues are generalized for the quantum
VMSG model as A���j0i � ��m�j0i, D���j0i � ��m�j0i,
where ��m� �

Q
ja��;

mj

mj�1
�, ��m� �

Q
ja

��;

mj�1

mj
� with

a��; m1

m2
� � m1

m2
� �2m1m2� cosh�2�� i���. This yields the

exact eigenvalue for the conserved quantities: trT��� as
���;�1; . . . ; �n� � ��m�

Qn
j f�

�j
� � � ��m�

Qn
j f�

�
�j
�, where

f��
� is expressed through the elements of the R��
� matrix,
which remains unchanged for the VMSG model. The
Bethe equations for determining the parameters f�jg are
generalized similarly by taking m! mj.

Since our VMSG model can be reduced from the con-
formal affine Toda model, a coordinate transformation
�x; t� ! �X; T� exists, which can take the SG model with
variable mass formally to the SG model with constant
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mass, though the domain might shift to an unphysical
region and singularities might arise. Such a nonlinear
transformation, amounting to going to a noninertial frame,
takes a particularly simple form in the light-cone coordi-
nates: X� �

R
dx�f2

� [14,15]. However, for investigating
the physical effect of a given inhomogeneous medium
inducing accelerated and shape changing solitons, one
has to analyze the model in its original form with variable
mass. A similar situation arises also in other inhomoge-
neous systems with integrable nonisospectral flow, e.g.,
[22] in the study of accelerated solitons in plasma through
the NLS equation, in discrete NLS, in a Toda chain, in a
matrix Schrödinger problem with a boomeron solution
[18], etc. In most of these models, though, the inhomoge-
neities could be removed by tricky nonlinear transforma-
tions; the investigations were carried out in the original
systems due to their physical relevance. Surprisingly, this
long list of literature devoted to various inhomogeneous
integrable models does not include the well known SG
model and also avoids any quantum treatment, except
perhaps a recent attempt [23]. This enhances therefore
the importance of the present result, which explores the
inhomogeneous integrable SG model, presents its exact
solution both in the classical and in the quantum case. Its
analytic soliton solutions can simulate at certain limits
realistic events like fluxons in nonuniform Josephson junc-
tion, dynamics of spin waves with variable coupling, DNA
solitons in the active promoter region, etc. Regulating the
position-dependent mass in an integrable VMSG model
one can create a semikink solution suggesting a possible
exact theory for semifluxon.
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