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Phase Diagram for a Bose-Einstein Condensate Moving in an Optical Lattice
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The stability of superfluid currents in a system of ultracold bosons was studied using a moving optical
lattice. Superfluid currents in a very weak lattice become unstable when their momentum exceeds 0.5
recoil momentum. Superfluidity vanishes already for zero momentum as the lattice deep reaches the Mott
insulator (MI) phase transition. We study the phase diagram for the disappearance of superfluidity as a
function of momentum and lattice depth between these two limits. Our phase boundary extrapolates to the
critical lattice depth for the superfluid-to-MI transition with 2% precision. When a one-dimensional gas
was loaded into a moving optical lattice a sudden broadening of the transition between stable and unstable

phases was observed.
DOI: 10.1103/PhysRevLett.99.150604

The realization of condensed matter systems using ultra-
cold atoms brings the precision and control of atomic
physics to the study of many-body physics. Many studies
have focused on Mott insulator physics, an important
paradigm for the suppression of transport by particle cor-
relations. Previous studies of the superfluid (SF)-to-Mott
insulator (MI) transition in optical lattices with ultracold
bosons [1-8] addressed the quenching of superfluidity
below a critical lattice depth. Here we extend these studies
into a second dimension by studying stability of superfluid
current as a function of momentum and lattice depth as
suggested in Ref. [9]. These transport measurements show
the stability of superfluid at finite current, which is in
nonequilibrium.

Transport measurements extend previous work on sta-
tionary systems in two regards. First, superfluidity near the
MI transition has only been indirectly inferred from coher-
ence measurements, whereas in this work, we characterize
the superfluid regime by observing a critical current for
superfluid flow through the onset of dissipation. Second,
previous studies [1-8] were not able to precisely locate the
phase transition, since the observed excitation spectrum
and atomic interference pattern did not abruptly change
[3,5,6], partially due to the inhomogeneous density. In
contrast, the sudden onset of dissipation provides a clear
distinction between the two quantum phases. In the SF
phase, current flows without dissipation if the momentum
does not exceed a critical momentum, while in the MI
phase the critical momentum vanishes and transport is
dissipative.

Bosonic atoms in an optical lattice are often described
by the Bose-Hubbard Model where the tunneling between
nearest neighbor lattice sites is characterized by the hop-
ping matrix element J and the repulsive interactions by the
on-site matrix element U [1,10—12]. The dimensionless
interaction energy u = U/J determines the quantum phase
of the system. For u > u,, the system is in the MI phase, for
u <u,., the SF phase. u,. increases with the number of
atoms N per site.
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For weak interactions (¥ — 0), the system approaches
single-particle physics in a periodic potential well de-
scribed by Bloch states and band structure. The critical
momentum for a stable current-carrying state is 0.5 p,
(p, = h/A is the recoil momentum of an atom, where A
is the wavelength of the optical lattice light) [13]. At the
critical momentum, it becomes possible for two atoms in
the same initial Bloch state to scatter into two other states
and conserve energy and quasimomentum [14,15]. Insta-
bilities in a 1D optical lattice were studied theoretically
using a linear stability analysis of the Gross-Pitaevskii
equation [13,16], and experimentally [14,17,18]. The theo-
retical studies predicted that for increasing lattice depth or
increasing atomic interactions the stability of superfluid
flow should increase [13,16]: the dynamic instability
would stay near 0.5 p,, whereas the Landau critical veloc-
ity and therefore the energetic instability would shift to
larger momenta (For more discussions on dynamic and en-
ergetic instability, see Refs. [19,20]). However, these
analyses neglect the growing importance of quantum cor-
relations for larger lattice depth which leads to the SF-MI
phase transition, where the critical momentum for a super-
fluid current vanishes. In this Letter, we study the decrease
of the critical momentum from its value for the weakly
interacting regime towards zero at the MI transition
(Fig. 1).

Most studies of the SF-MI phase transition monitor the
coherence in the superfluid phase through an interference
pattern observed in the ballistic expansion resulting from a
sudden turn-off of the confining potential and lattice.
Previous observations of the phase transition found the
experimental transition point to lie in the range between
10 and 13 E; (with the recoil energy defined as Ez =
p2/2m, where m is the atomic mass) [3]. This uncertainty
is related to the inhomogeneous density profile of trapped
atoms and to the fact that the visibility of the interference
extends beyond the transition point due to short-range
coherence in the MI phase [6]. It has been suggested that
observed kinks in the visibility are linked to the formation
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FIG. 1. Phase diagram showing the stability of superfluid flow
in an optical lattice and the experimental procedure. The gray
curve shows the predicted boundary between superfluid flow and
dissipative flow phases for a three-dimensional gas with a
commensurate filling of N =1 atom per site [9]. The solid
(dashed) arrows illustrate the experimental trajectory used for
small (large) lattice depths (see text for details).

of the MI shells with occupation numbers N = 2 and 3 [6].
Several authors have suggested other features in the mo-
mentum distribution beyond coherent interference peaks as
a more distinct signature of the phase transition [21,22].
Here we show that the disappearance of the critical mo-
mentum for superfluid flow provides such a signature and
allows the determination of the transition point with high
precision.

Our measurement was not limited by the inhomogene-
ous density profile. For our range of lattice depths, low
critical momenta and the onset of dissipation occur only
near the formation of MI shells with integer occupation
numbers N [9]. The onset of dissipation related to the N =
1 domains occurs at smaller momentum than for other N
domains. For instance, with increasing momentum p the
N =1 domain becomes unstable first, and this triggers
dissipation over the whole atomic cloud [9]. Therefore,
the breakdown of superfluid flow in the system was deter-
mined by the formation of the N = 1 domain and was not
smeared out by the inhomogeneous density. Our criterion,
the sudden onset of dissipation, depended on the formation
of an insulating shell surrounded by a superfluid region,
which occurs only in the inhomogeneous case.

In our experimental setup, a Bose-Einstein condensate
(BEC) of 8’Rb atoms in the 5/, |1, —1) state was pre-
pared and trapped in a combination of an loffe-Pritchard
magnetic trap and an optical dipole trap. The number of
atoms in the BEC was typically 2 X 10°. The magnetic trap
frequencies were w,, = 40 Hz radially and w, = 4.6 Hz
axially. The laser beam for the optical dipole trap was ori-
ented along the x axis. This laser beam was retroreflected
and the polarization of the retroreflected beam was rotated
in order to minimize interference between the two beams.
Along the vertical direction (y axis) a lattice was formed by
a retroreflected laser beam. For the z axis, a moving lattice

was created by introducing a small frequency detuning 6 f
between the two counterpropagating laser beams using
acousto-optical modulators driven by phase-locked fre-
quency generators. The 3D optical lattice was ramped up
exponentially in 160 ms. All lattice beams were derived
from the same laser operating at A = 1064 nm and had an
1/€* waist of 100200 wm. The lattice depth was cali-
brated with 1% accuracy by applying a 12.5 us lattice
laser pulse to a BEC and comparing the observed
Kapitza-Dirac diffraction pattern of a BEC to theory.

For transport measurements, we moved an optical lattice
[17,23] which provides more flexibility to change the
momentum than exciting a dipole oscillation by displace-
ment of the BEC [24,25]. A moving optical lattice with
velocity v = A8 f/2 was created along the long axis of the
BEC by introducing a small frequency detuning 6f be-
tween two counterpropagating lattice beams. If the velocity
v(r) changes slowly enough not to induce interband ex-
citations, the initial Bloch state |p = 0) of the condensate
in the optical lattice adiabatically evolves into the current-
carrying state |p(f) = —muv(t)) where p is the quasimo-
mentum. For increasing lattice depth, the effective mass of
atoms m* = [92E(p)/dp*]~! increases, and the group ve-
locity v, = —(m/m*)v(t) decreases. As a consequence,
atoms prepared in a moving lattice with quasimomentum
p = —mu travel in the frame of the moving lattice with v,
and in the lab frame with velocity Av = v + v, = (1 —
m/m*)v, which approaches v in a deep lattice.
Consequently, we observed that in a deep moving lattice
atoms were dragged along to the edge of the trapping
region limiting the experimental time scale to probe for
dissipation. This became an issue for larger values of p and
was addressed by first ramping up the lattice with p =0
and then alternating the velocity of the moving lattice, thus
performing a low-frequency ac transport measurement in-
stead of dc.

We have used two sets of experimental procedures
(Fig. 1), and our results were consistent for both. Close
to the SF-MI phase transition, the lattice was increased to
Viaw With a fixed (and small) value of momentum p (dashed
arrows in Fig. 1). After a variable hold time #,,4 at V},, the
lattice was ramped down to zero, and the magnetic trap
switched off. After 33 ms of ballistic expansion, the atoms
were imaged and the condensate fraction was determined
as a function of momentum by using a bimodal fitting
function. For smaller lattice depths, the lattice was ramped
up with p =0 (Fig. 1). Then a sinusoidal momentum
modulation of the moving lattice with amplitude p;, was
applied by modulating the frequency detuning & f between
the counterpropagating lattice beams. The 10 ms period of
this momentum modulation was slow enough to meet the
adiabaticity condition, but fast enough to limit the dis-
placement of the atomic cloud to less than a few um.
Both the trapping potential and the optical lattice were
then turned off suddenly. After 33 ms of ballistic expan-
sion, the condensate fraction of the center peak of the
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superfluid interference pattern was recorded as a function
of the momentum modulation amplitude p,. Several
cycles (typically, three to five) of the momentum modula-
tion were applied to obtain a high contrast between the
stable and dissipative regimes [Fig. 2(a)].

Figure 2(a) shows how the transition between superfluid
and dissipative currents became sharper with increasing
number of cycles of the momentum modulation. The criti-
cal momentum was determined from a log-log plot of the
condensate fraction as a function of momentum p
[Fig. 2(c)]. The intersection between two linear fit func-
tions was taken as the critical momentum. Our result was
found to be independent of the time period and number of
cycles of the momentum modulation at a few percent level.

In the MI phase, stable superfluid flow is not possible
and the critical momentum should vanish. However, using
the procedure described above, we measured a small criti-
cal momentum of 0.02 p, for lattice depths V},, = 14, 15,
16 Eg. Up to this momentum, the SF-MI phase transition
remained reversible. We interpret the nonzero critical mo-
mentum as a finite-size effect. For our cloud size of
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FIG. 2 (color online). Determination of the critical momentum
of superfluid flow. Shown is the condensate fraction as a function
of a momentum p. (a) Condensate fraction with u/u, = 0.61 for
a variable number of cycles of the momentum modulation (one
cycle: X and blue line, two cycles: B and purple line, three
cycles: A and red line). A dashed vertical line indicates the
critical momentum where instability begins to occur. The two
and three-cycle data are offset vertically for clarity. These data
were fitted with an error function to guide the eye. (b) Images of
interference patterns released from an optical lattice at u/u,. =
0.61 moving with variable momentum. Instability occurred
between p = 0.31p, and 0.32p,. Some of the triangular data
points in (a) were obtained from these images. (c) Condensate
fraction on a log-log scale for two different interaction strengths.

60 um, the corresponding Heisenberg momentum uncer-
tainty of 0.018 p, agrees with our measured critical mo-
mentum. In cold atom experiments, some sloshing motion
of the cloud in the trapping potential is unavoidable. The
momentum uncertainty determined above indicates how
much sloshing motion can be tolerated without affecting
the observed phase transition.

The critical lattice depth for the SF-MI phase transition
can be determined as the point where the critical momen-
tum vanishes. Using the predicted functional form [9] of

the approach towards zero, p, < /1 — u/u,, as a fit func-
tion for the data points close to the SF-MI phase transition
(the data points shown in the inset of Fig. 3) we determined
the critical value u,. = 34.2 (£2.0) corresponding to a
lattice depth of 13.5(*0.2) Eg. Our result agrees with the
mean-field theory prediction u, = 5.8 X 6 = 34.8for N =
1 SF-MI phase transition [1] and deviates by 2 o from the
predictions of u, = 29.34(2) of quantum Monte Carlo
(QMC) simulation [26,27], which includes corrections
beyond the mean-field theory. This demonstrates that our
method has the precision to identify non-mean-field cor-
rections. However, to turn precision into accuracy, experi-
ments or QMC simulations [21,26,27] have to address
corrections due to finite size, finite temperature, and finite
time to probe the onset of the instability [27]. In our experi-
ment, these corrections seemed to be small, but have not
been characterized at the level of 1% in lattice depth.
The mean-field prediction for stable superfluid flow in
1D is similar to that for the 3D system [9]. However, it is
well known that fluctuations play a much more important
role in 1D. For studying a 1D system, we prepared an array
of one-dimensional gas tubes by ramping two pairs of
optical lattice beams up to lattice depths of V, =V, =
30 Ey suppressing hopping between the tubes. After a hold
time of 10 ms, a moving optical lattice was ramped up
along the z axis. As in our 3D experiment, a momentum
modulation was applied, after which the moving optical
lattice was ramped down to zero, followed by the other two
optical lattices. The condensate fraction was determined
after 33 ms of ballistic expansion as a function of the
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FIG. 3 (color online). Critical momentum for a condensate in a
3D lattice. The solid line shows the theoretical prediction for the
superfluid region. The horizontal solid line is a fit to the data
points in the MI phase. (Inset) Fit of critical momenta near the
SE-MI phase transition.
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FIG. 4 (color online). Critical momentum for a 1D gas in an
optical lattice. (a) The gray line indicates the mean-field theory
prediction. The interaction strengths are normalized by the
mean-field prediction for u, = 5.8 X 2 [1,4]. Squares (crosses)
represent the measured critical momentum (the center of the
transition). Measurements were taken at lattice depths of 0.25,
0.50, 0.75, 1.0, 2.0 Ek. The lines between crosses and squares
indicate the width of the transition region. (b) Condensate frac-
tion measured at 0.25 Ey and 0.75 E. The data were fitted with
an error function. Squares (the critical momentum) and crosses
(the center of the transition) are indicated on the plots.

momentum modulation amplitude. The critical momen-
tum, where the onset of dissipation begins, was identified
from a log-log plot as in the 3D case. Since the transitions
became very broad, we characterized them by an error
function fit, with the center of the fitted error function
taken as the center of the transition (Fig. 4).

In the 1D system, at a very shallow lattice depth of 0.25
Eg (corresponding to u/u, = 0.08) a sharp transition was
observed, and the measured critical momentum agreed
very well with the prediction [9,28] of a critical momentum
of 0.39 p,. However, a slight increase of the interaction
strength (to u/u, = 0.09 at a lattice depth of 0.5 Ej) led to
a significant decrease of the critical momentum as well as a
dramatic broadening of the transition as shown in Fig. 4.
For lattice depths larger than 2 Ejp, the transition became
very broad and showed complex behavior, and we could
not obtain quantitative fits. Our results show a significant
deviation from the mean-field theory predictions and are in
agreement with previous works [25,29,30].

The observed broadening of the transition confirms
theoretical studies which emphasize the importance of
quantum fluctuations in the 1D system. Quantum tunneling
out of metastable states which are ignored in the mean-field
description can lead to a decay of the superfluid current at
very low momenta [28]. In addition to quantum fluctua-
tions, thermal fluctuations provide a mechanism for current
decay [28]. In our experiment, we used a “pure” BEC
without a discernible thermal component. The close agree-
ment with 7 = O predictions indicates that thermal fluctu-
ations were not dominant.

In conclusion, we have used transport studies to connect
a well-known dynamical instability for weakly interacting
bosons with the equilibrium superfluid to Mott insulator
transition. A comparison of 3D and 1D systems confirms

the applicability of a mean-field description in three di-
mensions and the crucial importance of fluctuations in one
dimension. The disappearance of superfluid currents at the
SF-MI phase transition precisely located the phase transi-
tion. Our results illustrate the control and precision of
condensed matter physics experiments done with ultracold
atoms and their suitability to test many-body theories.
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