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Invasion Threshold in Heterogeneous Metapopulation Networks
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We study the dynamics of epidemic and reaction-diffusion processes in metapopulation models with
heterogeneous connectivity patterns. In susceptible-infected-removed-like processes, along with the
standard local epidemic threshold, the system exhibits a global invasion threshold. We provide an explicit
expression of the threshold that sets a critical value of the diffusion/mobility rate below, which the
epidemic is not able to spread to a macroscopic fraction of subpopulations. The invasion threshold is
found to be affected by the topological fluctuations of the metapopulation network. The results presented
provide a general framework for the understanding of the effect of travel restrictions in epidemic

containment.
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The role of heterogeneity has been acknowledged as a
central question in the study of population biology of
infectious diseases [1-3] and revamped recently with the
evidence that a large number of real world networks ex-
hibit complex topological properties [4—6]. These features,
often mathematically encoded in a heavy-tailed probability
distribution P(k) that any given node has degree k, were
shown to affect the system evolution, altering the threshold
behavior and the associated dynamical phase transition [7—
9]. These studies have mainly focused on networked sys-
tems where each node corresponds to a single individual,
and only recently the study of the impact of heterogeneous
topologies on bosonic systems, where nodes can be occu-
pied by any number of particles, has been initiated [10].
Examples are provided by reaction-diffusion systems used
to model a wide range of phenomena in chemistry and
physics [11], and metapopulation epidemic models
[2,3,12-16] where particles represent people moving
across different subpopulations (nodes) such as city or
urban areas, and the reaction processes account for the
local infection dynamics.

Here we analyze epidemic metapopulation models char-
acterized by an infection dynamics within each node (or
subpopulation) that follows a Susceptible-Infected-
Removed (SIR) model. The mobility rate p of individuals
defines the coupling process among the subpopulations. In
the real world, the networks representing the mobility
pattern of individuals among different subpopulations are
in many cases highly heterogeneous [17-21]. For this
reason, the connectivity pattern of the metapopulation net-
work is described as a random graph with arbitrary degree
distribution P(k). By using a mechanistic approach it is
possible to show that along with the usual epidemic thresh-
old condition Ry > 1 on the basic reproductive number, the
system exhibits a global invasion threshold setting the
condition for the infection of a macroscopic fraction of
the metapopulation system [22,23]. The threshold condi-
tion on R, ensures the local outbreak at the subpopulation
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level [1,10], whereas the explicit expression obtained for
global invasion threshold R, > 1 provides a critical value
for the diffusion rate p, below which the epidemic cannot
propagate to a relevant fraction of subpopulations. We find
that the global invasion threshold is affected by the topo-
logical fluctuations of the underlying network. The larger
the network heterogeneity, the smaller the value of the
critical diffusion rate above which the epidemic may glob-
ally invade the metapopulation system. The present results
can be generalized to more realistic diffusion and mobility
schemes and provide a framework for the analysis of
realistic metapopulation epidemic models [24—28].

A simplified mechanistic (i.e., microscopic in the epi-
demic terminology) approach to the metapopulation spread
of infectious diseases uses a markovian assumption in
which at each time step the movement of individuals is
given in terms of a matrix d;; that expresses the probability
that an individual in the subpopulation i is traveling to the
subpopulation j. Several modeling approaches to the large-
scale spread of infectious diseases [24-27,29] use this
mobility process based on transportation networks com-
bined with the local evolution of the disease. The markov-
ian character lies in the assumption that at each time step
the same traveling probability applies to all individuals in
the subpopulation without having memory of their origin.
This mobility scheme coupled with an infection dynamics
at the local level can be generally viewed as equivalent to
classic reaction-diffusion processes with no constraint on
the occupation numbers N; of each subpopulation. The
total population of the metapopulation system is N =
>iN;, and each individual diffuses along the edges with a
diffusion coefficient d;; that depends on the node degree,
subpopulation size, and/or the mobility matrix. The meta-
population system is therefore composed of a network
substrate connecting nodes—each corresponding to a sub-
population—over which individuals diffuse. We consider
that each node i is connected to other k; nodes according to
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its degree, resulting in a network with degree distribution
P(k) and distribution moments (k*) = > k*P(k).

In the following, as a simplified diffusion process we
assume that the mobility is equivalent to a diffusion rate
along any given link of a node with degree k simply equal
to dyw = p/k. This is obviously not the case in a wide
range of real systems where the extreme heterogeneity of
traffic is well documented, and more realistic processes
will be considered elsewhere. This simple process, how-
ever, automatically generates a stationary distribution of
occupation numbers that is better described by grouping
subpopulations according to their degree k:

k
—N, 1

where N is the average subpopulation size.

In each subpopulation j the disease follows an SIR
model, and the total number of individuals is partitioned
in the compartments S;(7), ;(1), and R;(1), denoting the
number of susceptible, infected, and removed individuals
at time ¢, respectively. The infection dynamics proceeds
as follows. Each susceptible individual has a transition
rate to the infected state expressed as BI;/N;, where S is
the disease transmissibility rate and /;/N; is the force
of infection in the homogeneous mixing assumption.
Analogously, each infected individual enters the removed
compartment according to the recovery rate w. The basic
SIR rules thus define a reaction scheme of the type S +
I — 2] and I — R, which conserves the number of indi-
viduals. The SIR epidemic model is characterized by the
reproductive number Ry, = 8/u, which defines the aver-
age number of infectious individuals generated by one
infected individual in a fully susceptible population. The
epidemic is able to generate a number of infected individu-
als larger than those who recover only if Ry > 1, yielding
the classic result for the epidemic threshold [1]. If the
spreading rate is not large enough to allow a reproductive
number larger than 1 (i.e., 8 > ), the epidemic outbreak
will quickly die out. This result is valid at the level of each
subpopulation and holds also at the metapopulation level
where Ry > 1 is a necessary condition to have the growth
of the epidemic [10].

The intuitive result on the subpopulation epidemic
threshold, however, does not take into account the effects
due to the finite size of subpopulations, the discrete nature
of individuals, and the stochastic nature of the reaction and
diffusion processes. These effects have been shown to have
a crucial role in the problem of resurgent epidemics, ex-
tinction, and eradication [22,23,30,31]. Also, in the present
framework indeed each subpopulation may or may not
transmit the infection to a neighboring subpopulation
upon the condition that at least one infected individual is
moving onto the noninfected subpopulations during the
epidemic outbreak. Given an SIR model with Ry > 1, the
total number of infected individuals generated within a
subpopulation and the mobility rate must be large enough

Nk=

to ensure the seeding of other subpopulations before the
end of the local outbreak [22,23].

As a simple example of this effect let us consider a
metapopulation system in which the initial condition is
provided by a single infection in a subpopulation with
degree k and N, individuals, given Ry > 1. In the case of
a macroscopic outbreak in a closed population, the total
number of infected individuals during the outbreak evolu-
tion will be equal to N, where a depends on the specific
disease model and parameter values used. Each infected
individual stays in the infectious state for an average time
! equal to the inverse of the recovery rate, during which
it can travel to the neighboring subpopulation of degree k'
with rate d;. We can therefore consider that on average
the number of new seeds that may appear in a connected
subpopulation of degree k' during the duration of the local
outbreak is given by

aN,
)\kk/ = dkk/ k. (2)
M

In this perspective we can provide a characterization of the
invasion dynamics at the level of the subpopulations, trans-
lating epidemiological and demographic parameters into
Levins-type metapopulation parameters of extinction and
invasion rate. Let us define DY as the number of diseased
subpopulation of degree k at generation 0, i.e., those which
are experiencing an outbreak at the beginning of the pro-
cess. Each infected subpopulation will seed—during the
course of the outbreak—the infection in neighboring sub-
populations defining the set D} of infected subpopulations
at generation 1, and so on. This corresponds to a basic
branching process [22,32,33] where the nth generation of
infected subpopulations of degree k is denoted D7.

In order to describe the early stage of the subpopula-
tions’ invasion dynamics we assume that the number of
subpopulations affected by an outbreak (with Ry > 1) is
small, and we can therefore study the evolution of the
number of diseased subpopulations by using a branching
process approximation relating D with D~ !. Let us con-
sider a metapopulation network with degree distribution
P(k) and V subpopulations and write the number of sub-
populations of degree k invaded at the generation n as

1

Dy =S Di K - 1)[1 - (R—())Aklk}P(klk’)(l b ‘k/]>

¥ k
3)

This equation assumes that each infected subpopulation of
degree k' of the (n — 1)th generation, DZ,‘I, will seed the
infection in a number (k' — 1) of subpopulations corre-
sponding to the number of neighboring subpopulations &’
minus the one that originally transmitted the infection, the
probability P(k|k’) that each of the X' — 1 not yet infected
neighboring subpopulations has degree k, and the proba-
bility to observe an outbreak in the seeded subpopulation,
ie,(1—R, Ak ) [34]. The last factor stems from the proba-
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bility of extinction P, = 1/R, of an epidemic seeded
with a single infectious individual [34]. In order to obtain
an explicit result we will consider in the following that
Ry — 1 <« 1, thus assuming that the system is found to be
very close to the epidemic threshold. In this limit we can
approximate the outbreak probability as 1 — Ry ¢ =
Awi(Rg — 1). The case of homogeneous diffusion of indi-
viduals d;, = p/k with the stationary solution of Eq. (2) for
the subpopulation size yields Ay = pNaw™!/{k). In ad-
dition, we assume that at the early stage of the epidemic
Di7!'/V, < 1, and we consider the case of uncorrelated
networks in which the conditional probability does not
depend on the originating node, i.e., P(k|k') = kP(k)/{k)
[5], obtaining

kP(k) pNa
D! = (Ry — D YK = 1), (4)
R Z
By defining ®" = >, D}, (k' — 1), the last expression can

be conveniently written in the iterative form

(k) = (k) pNa
(OS
which allows the increasing of infected subpopulations and
a global epidemic in the metapopulation process only if
2y _
)~ () pNe | ©
G

defining the global invasion threshold of the metapopula-
tion system. In other words, R, is the analogue of the basic
reproductive number at the subpopulations level and is a
crucial indicator in assessing the behavior of epidemics in
metapopulation models. Its expression indeed contains the
probability of generating an outbreak in a neighbor sub-
population by means of mobility processes, (Ry —
)pNa/(ulk)) for Ry— 1< 1, times the factor
(k?)/{k) — 1, which also appears in the threshold condi-
tions characterizing phase transitions on complex networks
[7,33,35,36]. The explicit form of Eq. (6) can be used to
find the minimum mobility rate, ensuring that on average
each subpopulation can seed more than one neighboring
subpopulation. The constant « is larger than zero for any
Ry > 1, and in the SIR case for R, close to 1 it can be
approximated by @ =~2(R, — 1)/R3 [34], yielding for the
SIR model a critical mobility value p., below which the
epidemics cannot invade the metapopulation system given
by the equation

"=Ry - D—5— SIS (&)

R*:(RO_ )

(S wRj
PN = oy 3o — 1

The above condition readily tells us that the closer to the
epidemic threshold is the single subpopulation outbreak,
the larger the mobility rate has to be in order to sustain the
global spread into the metapopulation model. It is impor-
tant to stress that when R, increases, the small (R, — 1)
expansions are no longer valid and the invasion threshold is

(N

obtained only in the form of a complicated implicit
expression.

In addition, Eq. (7) shows the dependence of the critical
mobility on the topological fluctuations of the mobility
network. The ratio (k)?/{k(k — 1)) is extremely small in
heavy-tailed networks, and it is vanishing in the limit of
infinite network size. This implies that the heterogeneity of
the metapopulation network is favoring the global spread
of epidemics by lowering the global spreading threshold. In
other words, the topological fluctuations favor the subpo-
pulation invasion and suppress the phase transition in the
infinite size limit. This finding provides a theoretical
framework and rationale for the evidence concerning the
inefficacy of travel restrictions in the containment of global
epidemics [27,37]. The simple plug-in of the actual num-
bers for modern transportation networks, the population
sizes, and realistic disease parameters in Eq. (7) indicates
that a reduction of 1 order of magnitude of the mobility is
not enough to bring the system below the invasion thresh-
old. While more complicated mobility schemes should be
considered for a precise calculation, this result sets the
framework for the understanding of mobility effects in
the spread and containment of infectious diseases.

In order to support the previous analytical finding we
have performed an extensive set of Monte Carlo numerical
simulations of the metapopulation system. The substrate
network is given by an uncorrelated complex network with
P(k) ~ k=% generated with the uncorrelated configuration
model [38] to avoid inherent structural correlations.
Network sizes of V = 10* and 10° nodes have been con-
sidered. The dynamics proceeds in parallel and considers
discrete time steps representing the unitary time scale 7 of
the process. The reaction and diffusion rates are therefore
converted into probabilities, and at each time step in each
subpopulation j a susceptible individual is turned into an
infectious individual with probability 1 — (1 — Nﬁj 7)li and

each infectious individual is subject to the recovery process
and recovers with probability p7. The mobility is modeled

global attack rate

1e-04
Ro 35 i

FIG. 1. Phase diagram of the metapopulation system. The final
epidemic size is shown as a function of the local threshold R,
and of the diffusion probability p.
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FIG. 2 (color online). Effect of the network heterogeneity on
the global epidemic threshold. The final fraction of diseased
subpopulations D(o0)/V at the end of the global epidemic is
shown as a function of the mobility rate p in a homogeneous
network and a heterogeneous network.

assuming a diffusion probability for each individual along
each link of the subpopulation of the form dy = p/k.

A complete analysis of the system phase diagram is
obtained by analyzing the behavior of the global attack
rate R(o0)/N, defined as the total fraction of cases in the
metapopulation system at the end of the epidemic, as a
function of both Ry and p. Figure 1 reports the global
attack rate surface in the p-R, space and clearly shows
the effect of different couplings as expressed by the value
of p in reducing the final size of the epidemic at a given
fixed value of Ry. The smaller the value of R, the higher
the coupling needs to be in order for the virus to success-
fully invade a finite fraction of the subpopulations, in
agreement with the analytic result of Eq. (7). This provides
a clear illustration of the varying global invasion threshold
as a function of the reproductive rate R,. Furthermore, it is
possible to study the effect of the heterogeneity of the
metapopulation structure on the global epidemic threshold.
Figure 2 shows the results obtained by comparing two
random metapopulation networks, one with Poissonian
degree distribution (homogeneous network) and one with
heavy-tailed [P(k) ~ k=>!] degree distribution (heteroge-
neous network). Despite the two models having the same
average degree and disease parameters, the fluctuations of
the power-law network increase the value of R., thus low-
ering the critical value of the mobility.

The present analysis provides insights in setting a frame-
work for the analysis of large-scale spread of epidemics in
realistic mobility networks. Furthermore, these results
open the path to future work aimed at analyzing refined
metapopulation infection models.
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