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Eliminating Segregation in Free-Surface Flows of Particles
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By introducing periodic flow inversions, we show both experimentally and computationally that forcing
with a value above a critical frequency can effectively eliminate both density and size segregation. The
critical frequency is related to the inverse of the characteristic time of segregation and is shown to scale
with the shear rate of the particle flow. This observation could lead to new designs for a vast array of
particle processing applications and suggests a new way for researchers to think about segregation

problems.
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Particle segregation has been a topic of intense research
and industrial frustration for many decades [1-4]. When
particles differ in almost any mechanical property, process-
ing typically leads to pattern formation [5,6], layering
[7,8], or complete separation of the materials [9—11] and
this nonhomogeneity can cause dramatic revenue loss and
product failure in a variety of industries. In particular,
particles of different size and density may segregate quite
strongly in free-surface flows; the larger (lighter) particles
often rise to the top, while the smaller (denser) particles
sink to the bottom. While recent efforts have made inroads
in controlling segregation using cohesion [12,13] or parti-
cle modification (to balance competing segregation
modes) [14,15], even these laudable efforts are not robust
to changes in particle properties and/or cohesion degree
and therefore are applicable to only a subset of typical
industrial practice. Here, we show that periodic flow in-
versions either manually (in a chute) or via selective baffle
placement (in a tumbler-type mixer) can serve as a general
method for eliminating segregation in free-surface flows,
perhaps the most common and well-studied of granular
flows [16-18].

Time-modulation in fluid mixing and other dynamical
systems [19] is a common practice, but has found only
limited application in granular processing [20—22]. The
key to adapting this idea to free-surface segregation lies in
recognizing that it takes a finite time for material to seg-
regate and that there is always a preferred direction that
particles tend to segregate. In order to exploit these two
facts, one needs to perturb the flow at a sufficiently high
frequency, f, such that f > ¢, !, where ¢, is the character-
istic segregation time.

A critical issue with this technique is that a full under-
standing of segregation kinetics—and therefore the char-
acteristic segregation time, f,—is still lacking. Never-
theless, using existing theoretical tools [9,23], an estimate
of the value of 7, and therefore the critical forcing fre-
quency, f.i, may be obtained via a scaling argument, as
follows. One may write a segregation flux expression as
J, = v, ¢, where v, is the segregation velocity and ¢ is the
concentration of the segregating species. Taking density
segregation as an example (size segregation is similar,
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albeit more complex [23]), the segregation velocity will
take the form v, = K, (1 — p) [9], where (1 — p) is the
dimensionless density difference and K will depend on the
local void fraction and granular temperature. The charac-
teristic segregation time may then be written as f, =
R/[K,(1 — p)], where R is the radius of the particles.
Using this value, we can define a segregation-based
Péclet number as Pe = w, where D is the collisional
diffusivity. Because of the current theoretical uncertainty
and the time-varying nature of our flow (as well as our
granular temperature, etc.), we treat 8 = K,R/D as a
fitting parameter that should be a decreasing function of
the fluctuation energy of the flow and should be close to
unity at small to moderate energies [9]. This yields Pe =
B(1 — p), so that by using the diffusivity as given by
Ref. [24] (D = 0.01R?7), we get t, written as t, = 2 =

Pe
R2 o 100 .. .
DFe — B(1=5) where 7 is the shear rate. This suggests that

the critical perturbation frequency, f;, will vary linearly
with the shear rate as

fcrit = 00137(1 - ,5) (1)

A simple geometry can be used to illustrate how this
might be exploited. Consider a chute flow that ““zigzags”
periodically in such a way that, at each bend, the bottom of
the previous flow leg now becomes the top of the next flow
leg, and so on [see Fig. 1(a)]. If the length, L, of each leg is
chosen such that L < U,,f, our theoretical arguments
suggest that segregation can be effectively thwarted.
While this thought experiment is theoretically satisfying,
physically implementing this model system, either compu-
tationally or experimentally, is cumbersome. Instead, we
examine two analogues of the zigzag mixer that are sche-
matically depicted in Figs. 1(b) and 1(c).

Computationally, we mimic the zigzag mixer using a
vertically bounded, periodic box whose sense of gravity
oscillates vertically [see Fig. 1(b)]. Computations are
based on the discrete element method [25,26] (DEM; for
details, see Ref. [27]). The results of a number of zigzag
simulations of density segregation are shown in Fig. 2
(right). In these 3D simulations, particles are initially
randomly mixed, gravity is inclined at angles ranging
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FIG. 1.

ii. Rotate

A schematic representation of the (a) zigzag chute thought experiment, along with the (b) model simulation and

(c) experiment used to approximate it. (a) In a vertical gravity field, the chute changes direction periodically so that the material
becomes roughly inverted. (b) In our simulations, we use a simple model of this whereby the system is periodic in the flow direction
and the inclined gravitational field, g,, has an oscillatory y component. (c) Experimentally, in order to achieve an asymptotic
concentration distribution in a modest-size system we put particles in a square tube which is first rocked, then rotated in order to alter
the sense of gravity [taking advantage of particles’ tendency to behave like a solid during the rotate step by angling the tube at 6 > «

(repose angle) during the rotate step].

from 22°-29° with respect to the horizontal, and particle-
roughened walls are used. Two particle bed heights, 10 and
20 particle diameters (2 mm), are examined as are two
density ratios, p = 0.5 and 0.25 (pjg = 1000 kg/m?).
Using Eq. (1) with an empirically fit 8 = 0.1 (due to
high fluctuational energy within the flow), we plot the
results of our simulations as a function of the ratio of the
gravitational “flipping” frequency to f;.. Here, the inten-
sity of segregation (IS) [20] is a measure of the mixedness,
where high values (typically greater than 0.25) imply
poorly mixed systems while low values correspond to
good mixing. This implies that the plot of our simulation
results in Fig. 2 (right) should yield points with high values
of IS for f/fei < 1 and low values of IS when f/f; > 1.
Despite the fact that many of our simulations resulted in
nonlinear shear profiles—making appropriate values of y
problematic —our results follow this trend to a remarkable
extent when we obtain y from the most highly shearing
portion of the flow.

Our experimental analogue of the zigzag mixer consists
of hollow square rods (which allow a flow height of H =
1.8 cm) with lengths varying from 25 to 205 cm that are
partially filled with (initially mixed) particles. In order to
mimic the behavior of the zigzag mixer the rods are first
rocked to induce flow down the inclined plane, and then
rotated to change the orientation of the particles prior to the
next rocking event [see Fig. 1(c)]. This process is repeated
until the particle distribution no longer changes with time.
Note that the rotate step is performed with the rod held at
an angle (#) significantly larger than the particles’ angle of
repose («) so that no particle rearrangement occurs during
the rotation. The rods are roughened on top and bottom to
minimize particle slip and have their back (conductive)
wall grounded to reduce electrostatic effects. Interestingly,
in analyzing the results of these experiments, one notes that
the ratio of f/f.; is a function of the density ratio and
aspect ratio of the tube only. This can be understood as
follows. We first experimentally verified that the flow down

the tube is essentially linear (see Ref. [28]) so that y =
2U,y, /H, where U,y is the average streamwise flow ve-
locity and H is the height perpendicular to the flow direc-
tion. We then note that the effective forcing frequency is
given as f = 2U,,/L, so that [using Eq. (1)]

f_ 100H

fcrit ﬁL(l - f_))

Taking B = 1.06 (due to relatively low flow energy
obtained during such a short acceleration), we plot the
results of experiments with mixtures of glass acetate, ace-
tate steel, and glass steel in Fig. 2 (left). The experiments
are analyzed via image thresholding techniques to extract
concentration profiles and IS values. For this plot, we
define an experiment as yielding a mixed result if the IS
value of the rocked-and-rotated particles is smaller than
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FIG. 2. Results from our models of the zigzag chute. (Left)
Plotting our experimental results as a function of tube aspect
ratio versus density ratio, we obtain agreement with theory for
three different density ratios. Here the line is a plot of Eq. (2)
with 8 = 1.06, the solid circles denote mixed systems, and the
open circles denote segregated systems. (Right) Under a wide
range of conditions, our computational results show high (low)
values of IS when f/f.; is less (greater) than 1. The closed
circles denote simulations using a density ratio of 0.25, while the
squares represent (.5. Lines through the points show the standard
deviation of the shear rate calculation.
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that of a control experiment where the rotate step is omit-
ted, otherwise it is denoted as a segregated result. In this
way, we eliminate the impact of rod length on our evalu-
ation of mixing.

Turning toward a practical application of this observa-
tion we recognize that, industrially, baffles are often used
to augment mixing; however, we will show that baffles
attached at the periphery of a tumbler are ineffective in
reducing segregation. This can be understood by tracking
the preferred direction of segregation within these drums,
whereby one notes that the static portion of the bed simply
“stores” the material and returns it in almost the same
orientation for its next pass through the surface layer (i.e.,
it undergoes a full 180° change in orientation prior to
returning to the flowing layer; see Fig. 3). This results in
asymptotically segregated systems even for drums whose
surface length, L, is small compared to Ut If we
instead place baffles near the axis of rotation, we periodi-
cally alter the flowing layer so that we achieve both (a) a
smaller average uninterrupted flow length, L, and
(b) periodic variations in the effective direction of segre-
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FIG. 3 (color). Images (a)—(f) show particle positions from
DEM simulations for an unbaffled tumbler (a)—(c) and a tumbler
with a single axially-located baffle (d)—(f). The light colored
particles are in the fixed bed portion of the flow (low velocity
relative to the tumbler wall), while the darker gray particles are
in the flowing layer. At the outset of the simulations, we “tag” a
vertical line of particles within the flowing layer and denote their
original orientation with a black arrow (see frames (a) and (d). In
the other frames, the green arrows denote the future average
position and orientation of the initially tagged particles as they
move through the bed. The broken, red arrow in frame (f)
represents a particle orientation that has “folded” upon itself
(i.e., the orientation contains a loop from a partial layer pass).
Note that the orientation of the arrow in the unbaffled case both
leaves and enters the flowing layer almost perfectly tangent,
while the orientation of the arrow in the baffled case is rotated
roughly 90°. The plot on the right shows the distribution of
rotations between particle layer passes for various tumbler
configurations. The black symbols represent the unbaffled case
and a case with (short) traditional baffles, both of which have
very narrow distributions centered on 0.5 rotations. In contrast
the axially located baffles (green and blue symbols) or long
traditional baffles (red symbols) result in much broader distri-
butions, suggesting that the orientation of particles in future
layer passes should be almost uncorrelated with previous passes.
Note that we define long traditional baffles as those that actually
transversely cut a portion of the flowing layer, much like the
axially oriented baffles.

gation with respect to the tumbler streamlines (as the
baffles rotate with the drum; see Fig. 3). This leads to
results quite similar to those seen in the zigzag mixer as
the static bed no longer returns the material to the flowing
layer(s) in the same orientation in which it left. Another
way to analyze the flow is shown in the plot at the right of
Fig. 3. Recalling that a single pass through the shearing
layer would reorient particles by 180°, one notes that the
segregation orientation will change during the mixing
process if the particles pass through the layer, on average,
in fewer than one half of a rotation. The number of rota-
tions per layer pass is almost exactly 0.5 for an unbaffled
mixer, and one with (shorter) traditional baffles; however,
the distribution of rotation times broadens considerably
both for long traditional baffles and for any number of
axial baffles.

Figure 4 depicts qualitative images and Fig. 5 shows
quantitative measures of the asymptotic mixing for both
experiments and simulations, for both bidisperse density
and size-related segregation. Both the DEM simulations

FIG. 4 (color). Asymptotic mixing results in tumbler mixers
for both size (left) and density (right) segregation. Unbaffled
tumblers [(a) and (b), experiments; (c) and (d), simulations]
result in strong radial segregation. In contrast, baffles that
truncate the flowing layer [shown experimentally in (e) and
(f), and computationally in (g) and (h)] dramatically reduce
the degree of segregation. For comparison, computational results
for a traditional baffle arrangement are shown in (i) and (j).
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FIG. 5 (color). Quantitative mixing results in tumbler mixers
for both density (top) and size (bottom) segregation. Experi-
ments are shown as symbols and simulations as lines. Note that
unbaffled mixers and mixers with short baffles behave very
similarly, while axial baffles or very long traditional baffles
results in significantly lower IS values (increase the degree of
mixing).

and the experiments use 1.5-4 mm glass and acetate
particles in short (6 particle diameters) 70 particle wide
tumblers which are rotated at 6 RPMs. Size segregation
involves a 3:2ratio (3 mm:2 mm), while density segrega-
tion involves a 2:1 ratio (glass:acetate). The simulated
particle sizes and densities (as well as vessel size) are
matched to their corresponding experiments, the particle
stiffness used is reduced in order to decrease necessary
simulation time (a practice shown to have essentially no
impact on flow kinematics [29]). While the (short) tradi-
tional baffles produce results similar to the nonbaffled case,
axially located baffles dramatically reduce the measured
asymptotic degree of segregation as do the very long tradi-
tional baffles.

While we have demonstrated two simple examples of
flow modulation, the method described here is entirely
general. As long as the flow perturbations alter the direc-
tion of segregation (relative to the previous particle flow
history) at high enough frequencies, this technique may be
used for a wide range of particle processing applications,
ranging from mixing to conveying, and can have a signifi-
cant impact in industries from foodstuffs to ceramics to
pharmaceuticals.
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