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We consider a �4 theory with a position-dependent distance from the critical point. One realization of
this model is a classical ferromagnet subject to nonuniform mechanical stress. We find a sharp phase
transition where the envelope of the local magnetization vanishes uniformly. The first-order transition in a
quantum ferromagnet also remains sharp. The universal mechanism leading to a tricritical point in an
itinerant quantum ferromagnet is suppressed, and in principle, one can recover a quantum critical point
with mean-field exponents. Observable consequences of these results are discussed.
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In standard phase transitions, such as the paramagnet-
ferromagnet transition or the liquid-gas transition, a homo-
geneous order parameter (OP; the magnetization in a mag-
net or the density difference in a fluid) goes to zero as one
crosses from the ordered phase into the disordered one. The
OP may vanish continuously, as in the case of a magnet
where the transition is second-order, or discontinuously, as
in the case of a fluid where the transition is first-order
except at the critical point. An external field may preclude
a homogeneous OP. This happens for a fluid in a gravita-
tional field, which produces a position-dependent density
profile [1] and in some sense destroys the critical point (see
below). Because of the weakness of gravity, this is a very
small effect. This raises the question whether qualitatively
similar, and maybe quantitatively larger, effects can be
achieved in other systems if an external field induces an
inhomogeneous OP.

We consider one such example, namely, a ferromagnet
subject to mechanical stress. We will first discuss a classi-
cal Heisenberg magnet, and later generalize to quantum
ferromagnets (FMs). Consider a metallic FM in the shape
of a circular disk that is bent in the direction perpendicular
to the disk plane. This leads to a position-dependent mass
density [2] and hence, in a metal, to a position-dependent
electron density and an inhomogeneous chemical potential
�. The FM transition is described by a �4-theory [3], and
within a Stoner model, the inhomogeneous � leads to a
spatially dependent distance from criticality. Naively, this
means that the system can be tuned to criticality only at
special positions within the sample, not everywhere at the
same time. One might thus expect the transition to become
smeared. This is what appears to be found for the liquid-
gas transition in a gravitational field [4–6], which does,
however, present a physically different situation [7]. For
the FM case, we find that the transition remains sharp in a
well-defined sense with mean-field critical behavior, even
though the magnetization M�x� is position-dependent and
hence ‘‘smeared’’ in some sense [8,9]. One might expect

thatM�x� is essentially restricted to a surface layer of fixed
width so that the dimensionality of the system is effectively
reduced by one. This is not the case; we find (for a
particular model of a sample of linear dimension L) that
M�x� is essentially nonzero in a region of width L1=3, so
the support of the magnetization diverges in the thermody-
namic limit, L! 1, albeit more slowly than L. This leads
to unusual critical exponents for some spatially averaged
observables.

Consider a flat circular disk sample of a metallic FM
with thickness L (in the x-direction) and a radius that is
some fixed multiple of L. A distortion of the disk in
x-direction from a flat shape into a paraboloid leads to a
strain tensor whose trace is a linear function of x [2], and
hence to an electron density n�x� � n0 � const:� x. (This
distortion must be achieved by bending, not, e.g., by grind-
ing.) Within a Stoner model, the distance r from criticality
depends linearly on the density of states and hence on the
cube root of n�x�. We consider a more general model where
r varies as a power of x:

 r�x� � r0 � 2�x=L�n: (1)

Note that we take the prefactor of the x-dependent term to
be ofO�1� in order to demonstrate the qualitative effects of
such a term. For a real bent plate, the prefactor will be
smaller, and we will give a semiquantitative discussion
below. Also, note that r�L� is bounded as L! 1. This
reflects a bending displacement proportional to L and
ensures that a meaningful thermodynamic limit can be
taken. Our model action is a �4-theory with a spatially
dependent mass given by r�x�,

 S �
Z
V
dx
�
r�x�

2
�2�x� �

c
2
�r��x��2 �

u
4
��2�x��2

�
: (2)

The integration extends over a volume V / L3, and c and u
are constants. We emphasize that this model is rather
general, and a magnet under stress is only one possible
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realization. We first treat this problem in a saddle-point
approximation and look for solutions of the form ��x� �
�0; 0;M�x��, with M�x� the inhomogeneous magnetization.
The saddle-point equation then reads

 cM00�x� � r�x�M�x� � uM3�x� �H; (3)

where we have added a magnetic field H. The physical
solution of the ODE (3) must obey the boundary conditions
M0�0� � M0�L� � 0.

While this ODE would be difficult to solve in closed
form, we can obtain a great deal of information from
asymptotic solutions and scaling considerations. For x�
L, one can neglect the x-dependence of r�x�, and one finds
a solution in terms of the Jacobi integral sn�x�; for x � L,
one can drop the M3 term and finds a solution in terms of
Airy functions. A smeared transition would imply a non-
zero magnetization for all parameter values [7]. This is
physically not possible: for r0 > 0, r�x� is positive definite,
and the physical solution must be M�x� 	 0. We thus
expect a sharp phase transition in the following sense:
there exists a value rc0 of r0 such that the envelope of the
magnetization vanishes uniformly as r0 ! rc0 at H � 0, or
as H ! 0 at r0 � rc0.

There are two explicit length scales in this problem: the
zero of r�x�, x0 � L��r0=2�1=n, and the bare correlation
length �0 �

��������������
�c=r0

p
. One expects the phase transition to

occur when x0 � �0 [apart from a factor of O�1�]. This
condition leads to rc0 � �2=‘2n=�n�2�, with ‘ � L=

���
c
p

a
dimensionless system size. For r0 � rc0, the zero of r�x� is
xc0 � L=‘2=�n�2�. Now define y � x=xc0, ��y� �
‘n=�n�2�M�x�, and h � Hl3n=�n�2�. � obeys

 �00�y� � ��y; r0‘2n=�n�2����y� � u�3�y� � h; (4a)

where

 ��y; z� � z� 2yn: (4b)

The solution of Eq. (4a) determines M�x� via the relation

 M�x� � ‘�n=�n�2���x=xc0; r0‘2n=�n�2�; H‘3n=�n�2��; (5)

where we show the dependence of � on r0 and H.
Now consider the thermodynamic limit, ‘! 1. Since

r�x� is bounded for all x [see Eq. (1)], we expect physical
quantities in this limit to be independent of ‘. From Eq. (5),
this requirement yields for the local magnetization a
power-law prefactor times an envelope function,
 

M�x; r0; H � 0� � r1=2
0 gr0

M�x=x
c
0�; (6a)

M�x; r0 � 0; H� � H1=3gHM�x=x
c
0�: (6b)

Similarly, for the envelope susceptibility ��x� �
�@M�x�=@H�H�0, we have

 ��x; r0� � r�1
0 g��x=x

c
0�; (6c)

where gr0
M, gHM, and g� are scaling functions. We can further

define a local specific heat C�x� � @2f�x�=@r2
0, where f�x�

is the free energy density which scales as M4�x�. For the
critical exponents �, �, �, and 	 defined by M�x� / r�0 ,
M�x� / H1=�, ��x� / r��0 , and C�x� / r�	0 , this implies

 � � 1=2; � � 3; � � 1; 	 � 0: (7a)

Finally, we determine the exponents 
 and �. The magne-
tization depends on r0 only through the combination
r0‘

2n=�n�2�. If we identify the diverging length scale �
that characterizes the phase transition with c1=2‘n=�n�2�,
we have r0 
 ��2 or �
 r�
0 with 
 � 1=2. Further-
more, the inverse susceptibility determines the exponent
� via ��1 / r0 
 ��2 	 ��2�� with � � 0. We thus have

 
 � 1=2; � � 0: (7b)


 and � defined in this way are finite-size scaling expo-
nents, and 
 does not represent the divergence of a coher-
ence length defined via the spatial decay of the two-point
correlation function. The latter remains finite even at the
transition, as it does in the case of the liquid-gas transition
in a gravitational field [6]. Thus, there is also a correlation
length exponent 
 that is equal to zero. There is a further
ambiguity within the framework of finite-size scaling:
defining �, for instance, as � � c1=2‘ would lead to differ-
ent values of 
 and �. The mean-field values given above
result from what in some sense is the most natural choice
for �. However, all choices for � preserve the exponent
relation 
�2� �� � �. The Essam-Fisher relation, 	�
2�� � � 2, is also fulfilled.

We have corroborated and augmented these results by
solving Eq. (3) numerically with the boundary condition
M0�0� � 0 and M�0� chosen such that the mean-field free
energy is minimized. Figure 1 showsM�x� for the case of a
linearly x-dependent mass, n � 1. M�x� is large in the
region where r�x�< 0 and small in the region where r�x�>
0, as one would expect. The asymptotic solutions men-
tioned above are also shown in Fig. 1.
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FIG. 1. The x-dependent magnetization (solid line) for r0 �
�1, n � 1, L � 1, c � 1=25, u � 1, H � 0. The dashed and
dotted lines represent asymptotic analytic solutions for x� L
and x � L, respectively. The inset shows the magnetization
together with the x-dependent mass function r�x�.

PRL 99, 147203 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
5 OCTOBER 2007

147203-2



With increasing r0, the magnetization decreases for all x,
see Fig. 2, and it vanishes uniformly when r0 reaches the
critical value rc0. For r0 > rc0, the physical solution of
Eq. (3) is M�x� 	 0. As r0 ! rc0 from below, the envelope
of the magnetization vanishes as jr0 � rc0j

1=2. For the value
M�x � 0�, this is demonstrated in the inset in Fig. 2. In a
magnetic field, the magnetization vanishes uniformly as
H1=3 for H ! 0 at r0 � rc0, see Fig. 3. These results show
that there is a sharp phase transition: the envelope of the
magnetization vanishes uniformly as r0 ! rc0 at H � 0, or
as H ! 0 at r0 � rc0. The order-parameter critical expo-
nents have mean-field values: � � 1=2 and � � 3. The
numerics suggest that the mean-field critical behavior also
holds for finite L. We have found Eqs. (6a) and (6b) to hold
for values of L2=c as small as 16.

We now consider spatially averaged observables (de-
noted by an overbar) rather than local quantities.
Consider an averaged magnetization �M � �1=L��R
L
0 dxM�x�. Since M�x� is essentially nonzero only on

the interval x 2 �0; xc0�, the upper limit of the integral is
essentially xc0 / ‘

n=�n�2�. Corrections to this approximation
are exponentially small. �M obeys, instead of Eq. (5),

 

�M � ‘�1fM�r0‘2n=�n�2�; H‘3n=�n�2��; (8a)

fM�u; v� �
Z 1

0
dy��y; u; v�: (8b)

Demanding again that observables are independent of ‘ for
‘! 1, this leads to exponents �� � �n� 2�=2n and �� �
3n=�n� 2�. Analogous considerations for the other ob-
servables we have considered yield the following set of
exponents for spatially averaged quantities,

 

���
n� 2

2n
; ���

3n
n� 2

; ���
n� 1

n
; �	�

�1

n
:

(9a)

From the averaged susceptibility �� � �@ �M=@H�H�0, we
find the exponent ��, and 
 is unchanged since �M depends
on the same combination of r0 and ‘ as M�x�,

 �� � 2=n; �
 � 1=2: (9b)

These exponents for the averaged quantities satisfy again
the relations �	� 2 ��� �� � 2 and �
�2� ��� � ��.

The exponent values depend on how the averaged quan-
tities are defined, and hence, on what exactly is being
measured. For instance, if one defined �M as �1=c1=3L1=3��R
L
0 dxM�x� to account for the fact that the magnetization is

essentially nonzero only for x < xc0 / ‘
1=3, one would find

mean-field values for all exponents.
We now apply these results to quantum FMs. It is

observed that the transition in itinerant FMs at sufficiently
low temperatures T is always first-order [10]. This has been
explained in terms of fluctuation effects due to the coupling
of the OP fluctuations to soft particle-hole excitations in
metallic FMs. As a result, the free energy in a mean-field
approximation has the form [11]

 F �
r
2
M2 �

v
4
M4 ln�M2 � T2� �

u
4
M4 �O�M6�; (10)

with v > 0. The v-term is negative, which leads to a first-
order transition at T � 0, and to a tricritical point at a
temperature Ttc � exp��u=2v� [12].

A position-dependent chemical potential in the regime
where the transition is first-order has two effects: (1) It
lowers the tricritical temperature Ttc, and a sufficiently
strong space dependence restores a quantum critical point;

FIG. 2. The x-dependent magnetization for r0 � �1 (1), r0 �
�0:8 (2), and r0 � �0:6 (3). All other parameter values are the
same as in Fig. 1, which lead to rc0 � �0:55213. The inset shows
a log-log plot of M�x � 0� vs r0 � rc0, with the solid line
representing a power law with an exponent of 1=2. See the
text for additional information.

FIG. 3. The x-dependent magnetization for r0 � rc0 and H �
0:003 (1), H � 0:0005 (2), and H � 0:00005 (3). All other
parameter values are the same as in Fig. 1. The inset shows a
log-log plot of M�x � 0� vs H, with the solid line representing a
power law with an exponent of 1=3.
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(2) it leads to an inhomogeneous magnetization as in the
case of classical magnets discussed above.

To quantify the first effect, we estimate the prefactor of
the space dependent term in �. For a displacement at the
edge of the plate equal to 0:01L (conservatively; more
severe bending may be possible), one finds a density
variation of about 0:01n0, and, instead of Eq. (1), r�x� �
r0 � 2�x=L with � � O�0:01�. Suppressing factors of
O�1�, the chemical potential is ��x� � �F�1� �x=L�.
The effects are smaller by a factor of about 102 compared
to those shown in our figures, but still large compared to
those of gravity on a fluid. To estimate the effect on Ttc, we
recall that the v-term in the free energy is due to a soft
propagator P � 1=�!� kvF� [16], with ! (k) the fre-
quency (wave number). A position-dependent � causes P
to acquire a mass or cutoff frequency!c proportional to the
prefactor of the x-dependency in ��x�, !c � ��F=@LkF.
Ttc is lowered by roughly @!c=kB. With � as above, and
typical values for all other quantities, one finds a very small
suppression �Ttc � O�10�6 K�. It is interesting, however,
that a sufficiently strong spatial dependence of � will
eventually destroy the mechanism that leads to a first-order
quantum phase transition, as does quenched disorder [16].

To study the second effect, we thus assume that the
transition is still first-order at low temperature. In this
case, the logarithm in Eq. (10) can be expanded, and the
Landau free energy is adequately represented by a power
series with a negative M4 term and a positive M6 term.
Generalizing to a nonhomogeneous situation, we then
obtain the following ODE for the OP in the quantum case,

 cM00�x� � r�x�M�x� � uM3�x� � wM5�x�; (11)

which replaces Eq. (3). Here, w> 0, u < 0, and r�x� is
given by Eq. (1). The resultingM�x� curves are very similar
to those in Fig. 2, but now M�x� goes to zero discontinu-
ously at a critical value r1

0 of r0. For L � 1, c � 1=25, u �
�1, w � 1, we find r1

0 � �0:39216.
We now consider the validity of our mean-field treat-

ment. If the quantum critical point is restored by a (hypo-
thetical) large position dependence of �, the quantum
critical behavior will be mean-field like since the spatial
dependence of � suppresses the mechanism that causes a
first-order transition in clean quantum FMs, and nonmean-
field critical behavior in disordered ones [16]. For the
classical transition, it is possible that the mean-field critical
behavior will also be exact. This is because the two-point
correlation function is always finite, and hence there are no
divergencies in simple perturbation theory. However, the
divergence of the envelope susceptibility, Eq. (6c), shows
that there are fluctuations that may influence the critical
behavior. Fluctuations of the elastic deformation should
also be considered [13,15]. These points require additional
investigation.

In summary, we have considered a model for a metallic
FM with a position-dependent electron density or chemical

potential. This can be realized by mechanically stressing
the sample. The phase transition remains sharp even
though the electron density is not homogeneous, and we
have given critical exponents for both local and spatially
averaged observables. In the quantum case, the tricritical
temperature is lowered, although for realistic stresses, this
is a small effect. If a stronger position dependence can be
realized (e.g., by means of optical lattices), this will even-
tually suppress the tricritical point, restoring a quantum
critical point with mean-field critical behavior.
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