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We predict the existence of a three-dimensional quantum Hall effect plateau in a graphite crystal subject
to a magnetic field. The plateau has a Hall conductivity quantized at 4e2

@

1
c0

with c0 the c-axis lattice
constant. We analyze the three-dimensional Hofstadter problem of a realistic tight-binding Hamiltonian
for graphite, find the gaps in the spectrum, and estimate the critical value of the magnetic field above
which the Hall plateau appears. When the Fermi level is in the bulk Landau gap, Hall transport occurs
through the appearance of chiral surface states. We estimate the magnetic field necessary for the
appearance of the effect to be 15.4 T for electron carriers and 7.0 T for holes.
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Recent advances in the fabrication of single graphene
sheets as well as the striking initial experiments on the
relativistic quantum Hall effect in graphene [1,2] have
generated intense interest in this remarkable material.
Most of the theoretical and experimental research has
focused on the properties of the low energy excitations
close to half filling which have a Dirac spectrum with a
speed of light of the order of 106 m=s. The spin-
unpolarized quantum Hall effect shows a sequence of
plateaus at �xy � �n�

1
2� � 4 e2

h consistent with the exis-
tence of two Dirac cones as well as a spin degeneracy [1,2].

The phenomenon of Hall conductivity quantization is,
however, not restricted to two dimensions and can occur in
bulk samples, albeit under more stringent conditions. It
was first observed by Halperin [3] that for a three-
dimensional (3D) electron system in a periodic potential,
if the Fermi level lies inside an energy gap, the conductiv-
ity tensor is necessarily of the form:

 �ij �
e2

2�h
�ijkGk; (1)

where �ijk is the fully antisymmetric tensor and ~G (which
may be zero) is a reciprocal lattice vector. With the ex-
ception of engineered multiquantum well systems [4], the
three-dimensional quantum Hall effect (3DQHE) has been
observed only in the Bechgaard salts [5,6], where a density
wave forms due to in-plane anisotropy. These materials are
highly 2D, with hopping ratios tx:ty:tz � 1:0:1:0:003. The
c-axis hopping is always neglected.

By contrast, in graphite the effective in-plane nearest-
neighbor hopping is tk ’ 3:16 eV and the c-axis hopping
t? ’ �0:39 eV [7]. Indeed, were the graphene sheets in
graphite stacked directly atop one another (����
stacking), the dispersion in an external field would
be En�B;kz���2t? cos�kzc0�� sgn�n�

�����������������
jnjB=B0

p
tk, with

B0��hc=e�=3�a2
0� 7275 T. The c-axis dispersion would

then overwhelm the Landau gaps for fields below B� �
�4t?=tk�2B0 � 1800 T, which is unattainably large. This is

typically the scenario in layered materials, even when the
hopping anisotropy is as large as 10:1.

In this Letter we show that a true bulk room-temperature
3DQHE is realized in doped graphite under a large mag-
netic field parallel to the c axis. Three factors conspire to
render this possible: the large Landau gap of the integer
quantum Hall state in graphene, the weak interplane hop-
ping, and especially the Bernal stacking. We first give a
physical argument for the existence of 3DQHE based on
adiabatic continuity, then perform a full Hofstadter calcu-
lation [8] in 3D of the band and surface state structure,
using the realistic Johnson-Dresselhaus [9] Hamiltonian
for graphite, plus a magnetic field. We find the minimum
magnetic field necessary for a 3DQHE to be 15.4 T for
electrons and 7.0 T for holes, and show that only one Hall
plateau (Fig. 1) will be observed due to band closing in the
higher Landau levels (LLs). Beside the obvious prediction
of a plateau in off-diagonal conductive response, we also
predict that a correlated chiral surface state [10] occurs at
the boundary of the sample. Based on the recent experi-
mental focus on graphite [11] we believe our prediction is
testable with current experimental techniques. Previous
Hall plateaus observed in undoped graphite [12,13] are
even in B and come in multiple sequences consistent
with the graphene QHE plateaus [1,2]. They are hence
different than our prediction of a single quantized Hall
plateau of Hall conductivity twice as large as the one
observed in graphene for Fermi level in the first Landau
gap of doped graphite.

Graphite is a layered material consisting of weakly
coupled graphene layers in an ���� configuration known
as Bernal stacking [14], as depicted in Fig. 1 [15]. If we
‘‘turn off’’ the interlayer hopping, then in a field each layer
exhibits a relativistic QHE as previously described, with a
LL energy En � 	

������
2n
p

@v=‘, where ‘ �
��������������
@c=eB

p
is the

magnetic length, n � 0; 1; . . . , and v � 106 m=s. Typical
values of the gap are roughly 0.1 eV for B � 10 T and
>0:25 eV for B> 40 T, thus making graphene the first
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system to exhibit quantized Hall conductance at room
temperature. Placing the Fermi level in the first Landau
gap, the uncoupled graphene layers trivially exhibit a
3DQHE, with the bulk enveloped by a sheath of chiral
surface states as in Fig. 1. Adiabatically reintroducing the
intralayer hopping causes almost all the LLs to disperse
with kz. The exceptions are the zero modes, which are
stable in an idealized model due to particle-hole symmetry,
as we show below. By adiabatic continuity, the sheath of
chiral states (and hence the 3DQHE) must be stable as long
as the Landau gap does not collapse.

We first show that the statement above is true for a
simplified toy model of graphite. If we introduce a parame-
ter x � t?=t

graphite
? which interpolates between uncoupled

graphene layers (x � 0) and graphite (x � 1), the minimal
Hamiltonian of our system is a 4� 4 Hermitian matrix
acting on the lattice spinor ( A,  B,  C,  D), where (A, B)
and (C, D) are the two inequivalent sites of the lower and
upper graphene layers in the Bernal stacking, respectively.
Its nonzero independent elements are H AB � �H

�
CD ���

3
p

2 tka0k�, and H AC � �2t? cos�12 kzc0�. The in-plane
hopping is tk � 3:16 eV, t? � 0:39 eV is the interlayer
(A-C) hopping in graphite (x � 1) [14], and a0 � 2:456 �A
is the graphene lattice constant (in-plane A-A distance).
The c-axis lattice constant is c0 � 6:74 �A, and k	 � kx 	
iky. The in-plane dispersion is expanded about the
point K � �4�3a0

; 0; 0�, which is the Dirac point in graphene.

In a uniform magnetic field, adopting the gauge ~A �
1
2B��y; x; 0�, the Kohn-Luttinger substitution k	 ! kx 	
iky �

e
@c �Ax 	 iAy� [16]. When x � 1, this is the model

used in [17]. Let by, b be LL creation and annihilation
operators (with 
b; by� � 1), and introduce the notation
cz � cos�12 kzc0�. The Hamiltonian is

 H �x� �

0 ��tkb �2t?cz 0
��tkby 0 0 0
�2t?cz 0 0 ��tkb

y

0 0 ��tkb 0

0
BBB@

1
CCCA (2)

with � � B=B0. Diagonalizing in the basis  � �jni; jn�
1i; jni; jn� 1i�, for n > 0, one finds the eigenvalues

 En � 	
�n�
1
2��

2t2
k
� 2t2?c

2
z

	
����������������������������������������������������������������������
1
4�

4t4
k
� 4�n� 1

2��
2t2
k
t2?c

2
z � 4t4?c

4
z

q
�1=2: (3)

This spectrum has explicit particle-hole symmetry. For
n � 0 there are eigenvalues at 	��2t2

k
� 4t2?c

2
z�

1=2 and a
doubly degenerate level at E0 � 0. (All levels receive an
additional double degeneracy owing to the existence of the
inequivalent K point.) The next Landau bands are the
lowest two energy levels of n � 1. We observe that the
gap between the zero mode and the proximate LLs cannot
collapse upon interpolating between x � 0 and x � 1 for
any value of the magnetic field. By adiabatic continuity,
then, the Hall conductance when the Fermi level is in the
3D gap (with doubling for spin) is

 �xy �
4e2

h

Z d3k

�2��3
Im

�
@ 
@kx

��������@ @ky
�

� �2n� 1�
4e2

h

Z dkz
2�
� �2n� 1�

4e2

hc0
: (4)

With the Fermi level between the zero mode and the first
LL, n � 0 and �xy � 	4e2=hc0. The Bernal stacking of
graphite accounts for the extra factor of 2 relative to
graphene and

R d2k
�2��2 Im h@kx j@ky i � 2n� 1 is the

TKNN integer [18] of the relativistic graphene bands
when the Fermi level is placed in the nth bulk gap. We

FIG. 1 (color online). (a) Graphite in Bernal stacking.
(b) Under strong magnetic field, graphite is gapped in the bulk
and exhibits chiral surface sheet states. (c) Idealized Brillouin
zone for graphite. (d) Predicted 3D Hall conductivity, quantized
in units of 1=c0. Only one plateau is observable in graphite.

FIG. 2 (color online). Zero mode spectrum and Landau levels
of our toy model in B � 10 T interpolated between graphene
(x � 0), with no kz dispersion, and graphite (x � 1). The zero
mode (blue line) is doubly degenerate, giving a 3D Hall con-
ductance of e2

h
1
c0

per independent K point per spin.
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observe that the gap between the first and the second LL in
graphite closes for any realistic value of the B field (Fig. 2),
and hence higher n plateaus will not be observed. Zeeman
splitting could give rise to a �xy � 0 plateau, but it is
smeared by the dispersion of the zero mode in the realistic
graphite model used below, and hence the predicted Hall
conductance is sketched in Fig. 1.

The existence of a full gap in the 3D LL spectrum is an
artifact of the toy model involving only tk and t?. It derives
from the presence of a flat twofold degenerate band at the
Fermi level along the H-K spines of Brillouin zone
[Fig. 1(c)] and the Bernal stacking. More realistic treat-
ments, such as the Slonczewski-Weiss-McClure (SWMC)
[7] or Johnson-Dresselhaus (JD) [9] models, contain small
c-axis B-B (D-D) hopping terms, through the open hex-
agons of the CD (AB) plane. Their value is small on the
scale of nearest-neighbor hopping—only 10 meV, leading
to a bandwidth of 40 meV along the H-K spine. But the
presence of such terms is crucial toward understanding the
properties of graphite. At B � 0, they result in semimetal-
lic behavior, whereas the toy model incorrectly predicts a
zero gap semiconductor. For weak fields, they lead to
overlap of the LLs and destruction of the QHE. However,
as we shall show, the principal gaps surrounding the central
n � 0 LLs survive for B> 7:0 T (holes) and B> 15:4 T

(particles). Lightly doped graphite, then, will exhibit a
3DQHE at these fields. We next describe our solution of
the JD model in a magnetic field on a torus and a Laughlin
cylinder, finding the LLs and the surface states, and deter-
mining the critical fields Bc at which energy gaps open
across the entire Brillouin zone [19,20].

The JD model [9] is a tight-binding Hamiltonian derived
from the k � p theory of SWMC. Its nine parameters are
given in Table I. In addition to nearest-neighbor hoppings,
there are also further-neighbor hoppings, both in-plane
(extending to third and fourth neighbor) and between
planes. There is also an energy asymmetry � � "A�C� �
"B�D�. We introduce a magnetic field via Peierls phases on
the links, preserving all rotational (and screw axis) sym-
metries of the lattice, as in Fig. 3.

We solve the model through a combination of exact
diagonalization, Lanczos method (for q > 1000, where
the flux per hexagonal plaquette is 1=q Dirac quanta �0 �
hc=e), and low-field expansion. For the bulk band struc-
ture, we impose doubly periodic (i.e., toroidal) boundary
conditions in the (x, y) plane, while to study edge (surface)
states we impose singly periodic (i.e., cylindrical) bound-
ary conditions. For q > 20 the Hofstadter broadening be-
comes negligible and the band energies as a function of kx
become nondispersive, corresponding to the real situation
in which the magnetic field splitting is small compared to
the in-plane hopping amplitude.

TABLE I. Tight-binding parameters

Parameter meV Parameter meV Parameter meV

tk;1AB � tk;1CD 4200 tk;2AB � tk;2CD 512.5 tk;3AB � tk;3CD 15
tAC �390 tBD �315 tAD � tBC �44
t?AA0 � t?CC0 �19 t?BB0 � t?DD0 10 � 50

FIG. 3 (color online). Hopping matrix elements and flux as-
signment. Sites A and B belong to different graphene layers than
C and D. Bernal stacking corresponds to A and C differing by a
c-axis translation. Not shown are further-neighbor in-plane
hoppings tk;2AB and tk;3AB. � � 2�p=q is the magnetic flux per
hexagon in units of @c=e, and n runs from 1 to q the size of
the magnetic unit cell.

FIG. 4 (color online). Clockwise from upper left: (a) B � 5 T,
no gap present in the full spectrum. (b) B � 12 T, clear gap in
the hole LL spectrum. (c) B � 20 T clear gaps for both hole and
electron LL. Spin-up (blue line) and spin-down (red line) bands
are shown. (d) Principal energy gaps surrounding n � 0 LLs,
including effects due to Zeeman splitting. The particle gap
collapses at Bec � 15:4 T and the hole gap at Bhc � 7:0 T. All
energies have been shifted upward by 100 meV.
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We observe the following characteristics of the spec-
trum. The zero mode has a dispersion of 40 meV in the
low-field limit. The first LL, however, disperses strongly as
a function of kz and for each value of q we scan the energy
E�kz� spectrum to look for the smallest gap. Figure 4 shows
the bulk Landau level spectrum for B � 5, 12, and 20 T, as
well as the field dependence of the principal gaps surround-
ing the central, weakly dispersive n � 0 LLs. We find that
both gaps are indirect for B< 30 T. In Fig. 5 we plot the
bulk band and surface state spectrum as a function of kx
and kz, which proves the existence of gaps and surface
states over the entire Brillouin zone. On the Laughlin
cylinder, for each value of kz, we obtain 2 chiral edge
states on each of the upper/lower edges of the cylinder.
Unlike the low-field bulk LLs, the edge states disperse as a
function of kx and cross the bulk gap to give a Hall
conductivity of 	2e2=hc0 per spin, in agreement with
the bulk TKNN analysis. We find that the next gap, in
which 	6e2=hc0 per spin, opens only above B � 1000 T.
Thus, only one plateau is observable.

At low fields, each LL accommodates
��
3
p

2 a
2
0B=4�0 �

3:16� 10�6B 
T� states per carbon atom. Accounting for
the quadruple degeneracy of the LLs (twoK points and two
spin polarizations), the central n � 0 levels will be filled
for fields below 20 T at a doping of only 0.025%. For the
lowest field for which we predict the effect, the doping is a
modest 0.01% which can be achieved by doping with
Boron [21]. Unlike in a many-body gap, the Fermi level
is not pinned and the width of the LL will be given by the
width of the mobility single-particle gap in disordered

graphite. Strong disorder leads to wide Hall plateaus and
weak disorder to narrow ones [22].

In addition, the chiral surface sheet should exhibit a
ballistic, in-plane longitudinal response (�xx ! 0 as T !
0) as well as remarkable transport properties along the
magnetic field direction [10]. In this direction the system
is a stable metal with a T-independent resistivity �zz,
which can be much larger than h=e2. However, unlike
Ref. [10] we do expect the metallic phase to be unstable
to very strong disorder and impurity concentrations which
levitate bulk extended states above the Fermi level [23].
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FIG. 5 (color online). Zero mode, first electron Landau level,
and surface state spectrum over the first Brillouin zone for one
spin species at B � 40 T. (a) Surface state spectrum, (b) surface
state and bulk n � 0; 1 Landau levels where the n � 1�n � 0�
levels are shifted by �0:1 eV ��0:1 eV� for clarity. (Inset) n �
0; 1 Landau levels unshifted without surface states.
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