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We show that holographic models of QCD predict the presence of a Chern-Simons coupling between
vector and axial-vector mesons at finite baryon density. In the Anti de Sitter/Conformal Field Theory
dictionary, the coefficient of this coupling is proportional to the baryon number density and is fixed
uniquely in the five-dimensional holographic dual by anomalies in the flavor currents. For the lightest
mesons, the coupling mixes transverse � and a1 polarization states. At sufficiently large baryon number
densities, it produces an instability, which causes the � and a1 mesons to condense in a state breaking both
rotational and translational invariance.
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Introduction.—Models which use the gravity-gauge cor-
respondence to treat strongly coupled QCD as a five-
dimensional theory of gravity have progressed dramati-
cally in recent years [1–3]. Particularly at high energies,
these theories differ significantly from QCD—yet those
models which incorporate light quarks [4] and chiral sym-
metry breaking of the form observed in QCD [5] do capture
much of the important low-energy structure of the theory
and give rise to a spectrum of mesons whose masses, decay
constants, and couplings match those of QCD to within
20%.

The gravity-gauge approach includes both top-down
models of QCD arising from D-brane constructions in
string theory [5], and bottom-up phenomenological mod-
els, which attempt to capture the essential dynamics using
a simple choice of five-dimensional metric (AdS5) and a
minimal field content consisting of a scalar X and gauge
fields AaL� and AaR� [6,7]. These fields are holographically
dual to the quark bilinear �q�q� and to the SU�Nf�L �
SU�Nf�R flavor currents �qL�

�taqL and �qR�
�taqR of

QCD, respectively.
These holographic models can be used to study QCD at

finite baryon density [8,9]. In this Letter we focus on a
novel effect, in which a Chern-Simons term leads to mix-
ing between vector and axial-vector mesons. We will use
the model introduced in [6,7] and for the most part follow
the conventions and notation of [6].

The model.—We work in a slice of AdS5 with metric

 ds2 �
1

z2 ��dz
2 � dx�dx��; 0< z � zm: (1)

The fifth coordinate, z, is dual to the energy scale of QCD.
We generate confinement by imposing an ir cutoff zm and
specifying the ir boundary conditions on the fields. The UV
behavior, meanwhile, is governed by z! 0.

In Anti de Sitter/Conformal Field Theory (AdS/CFT)
calculations, boundary contributions to the action must be
treated with care. In the full AdS space, the only boundary

is in the UV (at z � 0). UV-divergent contributions to the
action and to other quantities are canceled by counter-
terms. For details, see [10,11]. In the model at hand, the
ir boundary at z � zm may contribute to the action. We
follow the approach of [6,7] by (1) dropping ir boundary
terms and (2) taking parameters normally fixed by ir
boundary conditions on the classical solution as input
parameters of the model.

We generalize the gauge symmetry to U�Nf�L �
U�Nf�R and add a Chern-Simons term which gives the
correct holographic description of the QCD flavor anoma-
lies [3]. The Chern-Simons term does not depend on the
metric and on general grounds will be present in any
holographic dual description of QCD. The U�1� axial
symmetry in QCD is anomalous, but in the spirit of the
large Nc approximation we treat it as an exact symmetry of
QCD with massless quarks. Including the anomaly would
not affect our conclusions.

The Lagrangian is thus

 S�
Z
d4xdz

���
g
p

Tr
�
jDXj2�3jXj2�

1

4g2
5

�F2
L�F

2
R�

�
�SCS:

(2)

The Chern-Simons term is given by

 SCS �
Nc

24�2

Z
�!5�AL� �!5�AR�	; (3)

where d!5 � TrF3, Nc is the number of colors, and
AL;R � ÂL;Rt̂� AaL;Rt

a where ta are the generators of
SU�Nf�L;R normalized so that Trtatb � �ab=2 and t̂ �
1=

���������
2Nf

p
is the generator of the U�1� subalgebra of

U�Nf�. In what follows, we take Nf � 2 so that a � 1,
2, 3. We will often work with the vector and axial-vector
fields V � �AL � AR�=2 and A � �AL � AR�=2.

Classical background.—We expand around a nontrivial
solution to the classical equations of motion for the scalar
X. Following [6,7], we find the scalar background
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 X0�z� �
�

1

2
Mz�

1

2
�z3

�


v�z�

2
1; (4)

where the coefficient M of the non-normalizable term is
proportional to the quark mass matrix, and � is the �qq
expectation value. We take both M and � to be diagonal:
M 
 mq1 and � 
 �1. As shown in [6,7], we can fix the
five-dimensional coupling g5 by comparison with the vec-
tor current two-point function in QCD at large Euclidean
momentum. This leads to the identification

 g2
5 �

12�2

Nc
: (5)

The model is thus defined by three parameters: zm,mq, and
�. Note that including the U�1� gauge fields and Chern-
Simons coupling does not mandate the addition of any new
parameters. We use zm � 1=�346 MeV�, mq � 2:3 MeV,
and � � �308 MeV�3, which correspond to values found
through a global fit to seven observables (Model B) in [6].

A background with a static constant quark density is
described by a classical solution to the equation of motion
for the time component of the U�1� vector gauge field V̂�,
which is dual to the quark number current. Solving the V̂0

equation of motion at zero four-momentum yields

 V̂ 0�z� � A� 1
2Bz

2: (6)

By the general philosophy of AdS/CFT, the coefficient of
the non-normalizable term, A, is proportional to the coef-
ficient with which the operator dual to V̂0 enters the gauge
theory Lagrangian. Since V̂� is dual to the quark number
current, A must be proportional to the quark chemical
potential. Meanwhile, the coefficient of the normalizable
term, B, is proportional to the expectation value of the
operator dual to V̂0: the quark number density. We now
obtain the normalizations of A and B. The action evaluated
for the background Eq. (6) is given by a boundary term:

 S �
1

2g2
5

Z
d4x

1

z
V̂0@zV̂0jz�0 �

1

2g2
5

AB
Z
d4x: (7)

At finite temperature and baryon number, the Euclidean
action is equal to the grand canonical potential. Using
Eq. (5), this implies that

 AB �
24�2

Nc
nq�q (8)

with nq the quark number density and �q the quark chemi-
cal potential. To fix A we separate U�Nf�L;R into U�1�L;R
and SU�Nf�L;R components and note that the Chern-
Simons term contains the coupling

 

Nc
24�2

3

8

Z
d4xdz	MNPQ�ÂL0 TrFLMNF

L
PQ � Â

R
0 TrFRMNF

R
PQ�;

(9)

where the indices M, N, P, Q run over 1, 2, 3, z and the

trace is over SU�Nf�. Defining the SU�Nf�L;R instanton
numbers by

 nL;R �
1

32�2

Z
d3xdz	MNPQTrFL;RMNF

L;R
PQ (10)

and taking ÂL;R0 constant, this reduces to the coupling

 

Nc
2

Z
dx0�ÂL0nL � Â

R
0nR�: (11)

Using the connection between instantons and Skyrmion
configurations of the pion field carrying nonzero baryon
number [12–16], we can interpret an instanton with nL �
�nR � Nb as a state with baryon number Nb.
Equation (11) then fixes A � �b=Nc � �q with �q the
quark chemical potential; Eq. (8) fixes B � 24�2nq=Nc.

Quadratic action.—In vacuum, the spectrum of the the-
ory consists of towers of scalar, vector, pseudoscalar, and
axial-vector mesons given by mode expanding the five-
dimensional fields along the holographic (z) direction and
integrating over z. In this section, we identify the spectrum
of excitations and their dispersion relations at nonzero
baryon density by expanding the action to quadratic order
around the background given by Eqs. (4) and (6).

We focus on the � mesons and the isospin triplet vector
� and axial-vector a1 mesons, ignoring contributions from
heavier mesons and from the scalar � which arises from
fluctuations in the magnitude of X. Couplings similar to
those for the �� a1 mesons exist for the isoscalar! and f1

mesons. For simplicity, we omit these as well.
Pions arise as Nambu-Goldstone modes associated with

the breaking of U�Nf�L �U�Nf�R to U�Nf�V . We write
X�x; z� � X0�z� exp�i2�ata� and expand to quadratic order
in �a. The four-dimensional pion field is obtained by
writing �a�x; z� � �a�x� ��z�. Similarly, the �a and a1

mesons appear by writing Va��x; z� � g5�
a
��x� ��z�,

Aa��x; z� � g5aa��x� a�z�. The wave functions  ��z�,
 ��z�, and  a�z� are solutions of the quadratic equations
of motion for fields with four-momentum q2 � m2 and
with boundary conditions  �0� � @z �zm� � 0. For de-
tails, see [6,7].

Making the above substitutions and expanding to qua-
dratic order yields the four-dimensional action

 S �
Z
d4x

�
1
2@��

a@��a � 1
2m

2
��a�a �

1
4��

a
�
�

2

� 1
4�a

a
�
�

2 � 1
2m

2
��

a
��

a� � 1
2m

2
aa

a
�a

a�

��	ijk��ai @ja
a
k � a

a
i @j�

a
k�

�
; (12)

with ��
, a�
 the field strengths for ��, a�. The Chern-
Simons term with coefficient � mixes the � and a1 me-
sons. It arises from reduction of a term of the formR
dV̂TrAdV in the expansion of Eq. (3).
As usual, to obtain Eq. (12) one must remove the mixing

between aa� and @��a by performing the transformation
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aa� ! aa� � �@��
a and then rescaling the pion field to

obtain a canonical kinetic energy term [17]. This leads to
a pion contribution to the Chern-Simons term. A total
spatial derivative, it does not contribute to the equations
of motion and may be dropped.

Since the � has JPC � 1�� and the a1 has JPC � 1��,
the Chern-Simons coupling is even under P and odd under
C. This is indeed consistent with a background having
nonzero baryon number, which preserves P and violates
C: the coupling is rotationally invariant but not Lorentz
invariant due to the preferred rest frame of the baryons.

We can deduce the existence of the Chern-Simons cou-
pling in four-dimensional terms as follows. The reduction
of the five-dimensional Chern-Simons term [5,18] gives
rise to the usual gauged Wess-Zumino-Witten action [19–
21], as well as a set of couplings which arise from inexact
bulk terms. These include a �� a1 �! coupling which,
in the presence of a coherent ! field in nuclear matter,
gives rise to a coupling of the form given in Eq. (12). The
�� a1 �! coupling has been considered previously in a
general discussion of chiral effective Lagrangians [22] and
is implicit in the formulas of [23]. Related terms appear in
[18,24]. In AdS/QCD, different forms of the gauged Wess-
Zumino-Witten action can be obtained by the addition of
UV counterterms [25], but these will not cancel the Chern-
Simons coupling and lead to explicit breaking of chiral
symmetry beyond that given by the quark mass term in
Eq. (4).

The mass of the � meson is given by m� � 2:405=zm,
whilema1

must be determined from a numerical solution of
the equation of motion. Model B of [6] finds m� �

832 MeV, ma1
� 1200 MeV which should be compared

to the experimental values m� � 775:8� 0:5 MeV and
ma1
� 1230� 40 MeV [26]. The parameter � in the

Chern-Simons coupling is given by

 � � 18�2nbz
2
mI; (13)

where I is the dimensionless overlap integral

 I �
1

z2
m

Z zm

0
dzz ��z� a1

�z�: (14)

Numerical evaluation of the integral gives I � 0:54. A
typical baryon density in nuclear matter, n0

b ’ 0:16=F3,
gives

 � ’ 1:05 GeV
�
nb
n0
b

�
: (15)

Phenomenological applications.—We now outline two
potentially observable consequences of the Chern-Simons
coupling between the � and a1. Details will appear
elsewhere.

Mixing of transverse � and a1 states.—We consider
plane-wave solutions to the equations of motion resulting
from Eq. (12), dropping the pion fields and focusing on the

� and a1 dispersion relation and polarization vectors.
Without loss of generality, we consider propagation along
x3:

 ���x� � 	���q�e�iq�x; a��x� � 	a��q�e�iq�x (16)

with q � �q0; 0; 0; q3�. For convenience, we suppress the
SU�2� indices in the following. The components �0, �3, a0,
and a3 have standard dispersion relations, unaffected by
the Chern-Simons coupling. The transverse components
�1, �2, a1, and a2 mix through a derivative coupling. The
equations of motion yield the dispersion relation for the
transverse polarizations

 q2
0 � q

2
3 �

1
2�m

2
� �m2

a1
� � 1

2

������������������������������������������������
�m2

a1
�m2

��
2 � 16�2q2

3

q
:

(17)

The lower sign in Eq. (17) gives a state which is pure � as
q3 ! 0. At nonzero q3, it is a mixture of transverse � and
a1 states with orthogonal polarization vectors:

 	a1 �
iM2�q3�

2�q3
	�2 ; 	a2 � �

iM2�q3�

2�q3
	�1 ; (18)

where we have defined �2 � m2
a1
�m2

� and M2�q3� �

�
����������������������������
�4 � 16�2q2

3

q
��2�=2. The upper sign in Eq. (17) gives

a pure a1 state for q3 � 0, while for nonzero q3,

 	�1 � �
iM2�q3�

2�q3
	a2 ; 	�2 �

iM2�q3�

2�q3
	a1 : (19)

For � greater than some momentum-dependent critical
value, the dispersion relation Eq. (17) leads to tachyonic
modes (modes having dq0=dq3 > 1). For very large mo-
menta, this critical value becomes

 �crit �
�����������������������������
�m2

� �m2
a1
�=2

q
’ 1:09 GeV: (20)

For a range of� below�crit the dispersion relation with the
lower sign in Eq. (17) exhibits interesting anomalous be-
havior, the analysis of which is beyond the scope of this
Letter.

It would be interesting to explore signatures of these
mixed polarization states in the quark-gluon plasma and in
nuclear matter.

Vector meson condensation.—To identify the tachyonic
instability which occurs for �>�crit we start with the
energy density corresponding to Eq. (12) for the diagonal
component of the � and a fields, aa � a�a3, �a � ��a3.
Completing the square and dropping the terms involving
the electric components of the field strengths, which play
no role in the instability, we find
 

H � 1
2�m

2
a ��

2� ~a � ~a� 1
2�m

2
� ��

2� ~� � ~�

� 1
2�
~Ba �� ~��

2 � 1
2�
~B� ��~a�

2; (21)

where ~B� � ~r� ~�, ~Ba � ~r� ~a.

PRL 99, 141602 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
5 OCTOBER 2007

141602-3



Applying the ansatz

 ~a � v cos��x3�x̂2; ~� � v sin��x3�x̂1; (22)

the last two terms in Eq. (21) vanish, while the average of
the first two terms over x3 is negative for �2 >�2

crit,
leading to an instability to v � 0. Understanding the stabi-
lization of the configuration Eq. (22) requires generalizing
H to include higher order terms. Note that Eq. (22) breaks
both rotational and translational symmetry, exhibiting a
structure similar to the smectic phase of liquid crystals
which includes an interesting set of topological defects.

The critical value Eq. (20) is remarkably close to the
estimate Eq. (15) for� at ordinary nuclear densities. If this
model is accurate then there should be a condensate of
vector and axial-vector mesons in nuclear matter with
baryon densities at or slightly above n0

b. In ordinary nuclei,
there are finite size effects as well as other corrections to
the � and a1 interactions which will have to be included to
determine whether this condensate occurs. Neutron stars
are more likely to produce such a condensate, as they are
thought to contain matter at a density somewhat greater
than n0

b. The interplay between this condensate and other
conjectured effects in nuclear matter, such as color super-
conductivity, pion condensation, and kaon condensation
[27] deserves further study.
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