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Secure key distribution among two remote parties is impossible when both are classical, unless some
unproven computation-complexity assumptions are made, such as the difficulty of factorizing large
numbers. On the other hand, a secure key distribution is possible when both parties are quantum. What is
possible when only one party (Alice) is quantum, yet the other (Bob) has only classical capabilities? We
present a protocol with this constraint and prove its robustness against attacks: we prove that any attempt
of an adversary to obtain information necessarily induces some errors that the legitimate users could

notice.
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Introduction.—Processing information using quantum
two-level systems (qubits), instead of classical two-state
systems (bits), has lead to many striking results such as the
teleportation of unknown quantum states and quantum
algorithms that are exponentially faster than their known
classical counterpart. Given a quantum computer, Shor’s
factoring algorithm would render many of the currently
used encryption protocols completely insecure, but as a
countermeasure, quantum information processing has also
begot quantum cryptography. Quantum key distribution
was invented by Bennett and Brassard (BB84) to provide
a new type of solution to one of the most important crypto-
graphic problems: the transmission of secret messages. A
key distributed via quantum cryptography techniques can
be secure even against an eavesdropper with unlimited
computing power, and the security is guaranteed forever.

The conventional setting is as follows: Alice and Bob
have labs that are perfectly secure, they use qubits for their
quantum communication, and they have access to an un-
jammable public classical communication channel.

In the well-known BB84 protocol as well as in all other
suggested protocols, both Alice and Bob perform quantum
operations on their qubits (or on their quantum systems).
Here we present, for the first time, a protocol in which one
party (Bob) is classical. For our purposes, any two orthogo-
nal states of the quantum two-level system can be chosen to
be the computational basis |0) and |1). For reasons that will
soon become clear, we shall now call the computational
basis ““classical”’ and we shall use the classical notations
{0, 1} to describe the two quantum states {|0), | 1)} defining
this basis. In the protocol we present, a quantum channel
leads from Alice’s lab to the outside world and back to her
lab. Bob can access a segment of the channel, and when-
ever a qubit passes through that segment Bob can either let
it go undisturbed or (1) measure the qubit in the classical
{0, 1} basis and (2) prepare a (fresh) qubit in the classical
basis and send it.

If all parties were limited to performing only operations
(1) and (2) or doing nothing, they would always be working
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with qubits in the classical basis, thus “classical bits”; the
resulting protocol would then be equivalent to a fully
classical protocol, and therefore, the operations themselves
shall here be considered classical. We thus term this pro-
tocol “QKD protocol with classical Bob.”

The question of how ““quantum” a protocol should be in
order to achieve a significant advantage over all classical
protocols is of great interest. For example, Refs. [1-4]
discuss whether entanglement is necessary for quantum
computation, Ref. [5] shows nonlocality without entangle-
ment, and Refs. [6,7] discuss how much of the information
carried by various quantum states is actually classical. We
extend this discussion into another domain: quantum cryp-
tography. ‘“‘Semiquantum’ protocols of various types
might even have advantages over fully quantum protocols,
if they are easier to implement in practice. For instance,
NMR quantum computing is among the most successful
implementations of quantum computing devices while the
performed NMR experiments were proven to use no en-
tanglement [1]. The potential practical advantages of semi-
quantum key distribution are left for future research.

To define our protocol we follow the definition (see, for
instance, [8]) of the most standard QKD protocol, BB84.
The BB84 protocol consists of two major parts: a first part
that is aimed at creating a sifted key, and a second (fully
classical) part aimed at extracting an error-free, secure,
final key from the sifted key. In the first part of BB84,
Alice randomly selects a binary value and randomly selects
in which basis to send it to Bob, either the computational
(“Z”) basis {|0), |[1)} or the Hadamard (“X”) basis
{|+),|-)}. Bob measures each qubit in either basis at
random. An equivalent description is obtained if Alice
and Bob use only the classical operations (1) and (2) above
and the Hadamard quantum gate H. After all qubits have
been sent and measured, Alice and Bob publish which
bases they used. For approximately half of the qubits
Alice and Bob used mismatching bases and these qubits
are discarded. The values of the rest of the bits make the
sifted key. The sifted key is identical in Alice’s and Bob’s
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hands if the protocol is error free and if there is no eaves-
dropper (known as Eve) trying to learn the shared bits or
some function of them. In the second part, Alice and Bob
use some of the bits of the sifted key (the TEST bits) to test
the error rate, and if it is below some preagreed threshold,
they select an INFO string from the rest of the sifted key.
Finally, an error correcting code (ECC) is used to correct
the errors on the INFO string (the INFO bits), and privacy
amplification (PA) is used to derive a shorter but uncondi-
tionally secure final key from these INFO bits. At this point
we would like to mention a key feature relevant to our
protocol: it is sufficient to use qubits in just one basis, Z,
for generating the INFO string, while the other basis is used
only for finding the actions of an adversary [9].

A conventional measure of security is the information
Eve can obtain on the final key, and a security proof usually
calculates (or puts bounds on) this information. The stron-
gest (most general) attacks allowed by quantum mechanics
are called joint attacks. These attacks are aimed to learn
something about the final (secret) key directly, by using a
probe through which all qubits pass, and by measuring the
probe after all classical information becomes public.
Security against all joint attacks is considered as ‘“‘uncondi-
tional security”’. The security of BB84 (with perfect qubits
sent from Alice to Bob) against all joint attacks was first
proven in [8,10,11] via various techniques.

Robustness.—An important step in studying security is a
proof of robustness; see, for instance, [12] for robustness
proof of their entanglement-based protocol and [13] for
suggesting a protocol secure against the photon-number-
splitting (PNS) attack and for proving its robustness.
Robustness of a protocol means that any adversarial at-
tempt to learn some information on the key necessarily
induces some disturbance. It is a special case, in zero noise,
of the more general ‘“‘information versus disturbance”
measure which provides explicit bounds on the information
available to Eve as a function of the induced error.

Definitions.—A protocol is said to be completely robust
if nonzero information acquired by Eve on the INFO string
(before Alice and Bob perform the ECC step) implies
nonzero probability that the legitimate participants find
errors on the bits tested by the protocol. A protocol is
said to be completely nonrobust if Eve can acquire the
INFO string without inducing any error on the bits tested
by the protocol. A protocol is said to be partly robust if Eve
can acquire some limited information on the INFO string
without inducing any error on the bits tested by the
protocol.

Partly robust protocols could still be secure, yet com-
pletely nonrobust protocols are automatically proven in-
secure (cf. Fig. 1). As one example, BB84 is fully robust
when qubits are used by Alice and Bob but it is only partly
robust if photon pulses are used and sometimes two-photon
pulses are sent.

Here we prove that our protocol for “quantum key
distribution with classical Bob” is completely robust.
Another protocol and a proof of its robustness are omitted

Info. on INFO bits
Info. on final key

threshold -

Dist. to tested bits

Dist. to tested bits
(a) (b)

FIG. 1. (a) Eve’s maximum (over all attacks) information on
the INFO string vs the allowed disturbance on the bits tested by
Alice and Bob, in a completely robust (solid line), partly robust
(dashed line), and completely nonrobust (densely dotted line)
protocol. (b) Robustness should not be confused with security;
Eve’s maximum information on the final key vs allowed distur-
bance in a secure protocol; such a protocol could be completely
or partly robust.

for the sake of brevity and will be provided in a future
work.

A mock protocol and its complete nonrobustness.—
Consider the following mock protocol: Alice generates a
random qubit in the Z basis. She chooses randomly
whether to do nothing or to apply Hadamard gate to trans-
form the qubit to the X basis. Bob flips a coin to decide
whether to measure Alice’s qubit in the Z basis (to ““SIFT”
it) or to reflect it back (““CTRL”), without causing any
modification to the information carrier. In case Alice chose
Z and Bob decided to SIFT, i.e., to measure in the Z basis,
they share a random bit that we call SIFT bit (that may or
may not be confidential). In case Bob chose CTRL, Alice
can check if the qubit returned unchanged by measuring it
in the basis she sent it. In case Bob chose to SIFT and Alice
chose the X basis, they discard that bit. The above iteration
is repeated for a predefined number of times. At the end of
the quantum part of the protocol, Alice and Bob share, with
high probability, a considerable amount of SIFT bits (also
known as the “sifted key’”). In order to make sure that Eve
cannot gain much information by measuring (and resend-
ing) all qubits in the Z basis, Alice can check whether they
have a low-enough level of discrepancy on the X basis
CTRL bits. In order to make sure that their sifted key is
reliable, Alice and Bob must sacrifice a random subset of
the SIFT bits, which we denote as TEST bits, and remain
with a string of bits which we call INFO bits.

By comparing the value of the TEST bits, Alice and Bob
can estimate the error rate on the INFO bits. If the error rate
on the INFO bits is sufficiently small, they use an appro-
priate ECC in order to correct the errors. If the error rate on
the X basis CTRL bits is sufficiently small, Alice and Bob
can bound Eve’s information and use an appropriate pri-
vacy amplification (PA) in order to obtain any desired level
of privacy.

At first glance, this protocol may look like a nice way to
transfer a secret bit from quantum Alice to classical Bob: it
is probably resistant to opaque (intercept-resend) attacks
and probably also against all collective attacks (where Eve
uses a different probe in each access to each qubit).
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However, it is completely nonrobust; Eve could learn all
bits of the INFO string using a trivial attack that induces no
error on the bits tested by Alice and Bob (the TEST and
CTRL bits). She would not measure the incoming qubit, but
rather perform a CNOT from it into a [0F) ancilla. If Alice
chose Z and Bob decided to SIFT, she measures her ancilla
and obtains an exact copy of their common bit, thus
inducing no error on TEST bits and learning the INFO string.
If, however, Bob decides on CTRL, i.e., reflects the qubit,
Eve would perform another CNOT from the returning qubit
into her ancilla. This would reset her ancilla, erase the
interaction she performed, and induce no error on CTRL
bits, thus removing any chance of her being caught.

A semiquantum key distribution protocol. —The follow-
ing protocol remedies the above weakness by not letting
Eve know which is a SIFT qubit (that can be safely mea-
sured in the computational basis) and which is a CTRL qubit
(that should be returned to Alice unchanged). By always
returning all qubits Bob forces Eve to delete any informa-
tion she gained, or else some error is potentially induced.
The protocol is aimed at creating an n-bit INFO string for
generating a shorter shared secret key.

Let the integer n be the desired length of the INFO string,
and let 6 > 0 be some fixed parameter. (1) Alice generates
N = 8n(1 + &) random qubits in the Z basis. For each of
the qubits, she randomly selects whether to apply the
Hadamard gate (““X”’) or do nothing (““Z”’). (2) For each
qubit arriving, Bob chooses randomly either to reflect it
(CTRL) or to measure it in the Z basis and resend it in the
same state he found (to SIFT it). Bob sends the first qubit to
Alice after receiving the last qubit, in the same order he
received them [14]. (3) Alice measures each qubit in the
basis she sent it. (4) Alice publishes which were her Z bits
and Bob publishes which ones he chose to SIFT.

It is expected that for approximately N/4 bits, Alice
used the Z basis for transmitting and Bob chose to SIFT;
these are the SIFT bits, which form the sifted key. For
approximately N/4 bits, Alice used the Z basis and Bob
chose CTRL; we refer to these bits as Z-CTRL. For approxi-
mately N/4 bits, Alice used the X basis and Bob chose
CTRL; we refer to these bits as X-CTRL. The rest of the bits
(those sent in the X basis but chosen as SIFT by Bob) are
ignored. (5) Alice checks the error rate on the CTRL bits and
if either the X error rate or the Z error rate is higher than
some predefined threshold P.r;, the protocol aborts.
(6) Alice chooses at random n SIFT bits to be TEST bits.
She publishes which are the chosen bits. Bob publishes the
value of these TEST bits. Alice checks the error rate on the
TEST bits and if it is higher than some predefined threshold
Pgs1, the protocol aborts.

The protocol aborts if there are not enough bits to
perform step 6 or 7; this happens with exponentially small
probability. (7) Alice and Bob select the first n remaining
SIFT bits to be used as INFO bits. (8) Alice publishes ECC
and PA data; she and Bob use them to extract the m-bit final
key from the n-bit INFO string.

A proof of robustness.—We show that Eve cannot obtain
information on INFO bits without being detectable.

Modeling the protocol. —Each time the protocol is exe-
cuted, Alice sends to Bob a state |¢) which is a product of
N qubits, each of which is either [+), | =), |0), or |1); those
qubits are indexed from 1 to N. Each of them is either
measured by Bob in the Z basis and resent as it was
measured, or simply reflected. Let m = {m,, ..., m,} be a
set of r < N integers | = m; <...<m, = N, describing
the qubits chosen by Bob as SIFT. For i € {0, 1}V, we
denote i,, = i,, ...i,, the substring of i of length r se-
lected by the positions in m; of course, |i,,) = iy, ... i, ).

In the protocol, it is assumed that Bob has no quantum
register; he measures the qubits as they come in. The
physics would, however, be exactly the same if Bob used
a quantum register of r qubits initialized in state |08) (r
qubits equal to 0), applied the unitary transform defined by
U, |08 = [i)]i,,) for i € {0, 1}V, sent back [i) to Alice,
and postponed his measurement to be performed on that
quantum register |i,,); the qubits indexed by m in |i) are
thus automatically both measured and resent, and those not
in m simply reflected; the kth qubit sent by Alice is a SIFT
bitif k € m and is either |0) or |1); it is a CTRL bit if k & m.
This physically equivalent modified protocol simplifies the
analysis, and we shall thus model Bob’s measurement and
resending, or reflection, with U,,.

Eve’s attack.—Eve’s most general attack is comprised of
two unitaries: Uy attacking qubits as they go from Alice to
Bob and Uy as they go back from Bob to Alice, where Ug
and Uy share a common probe space with initial state |0F).
The shared probe allows Eve to make the attack on the
returning qubits depend on knowledge acquired by Ug (if
Eve does not take advantage of that fact, then the ‘“‘shared
probe” can simply be the composite system comprised of
two independent probes). Any attack where Eve would
make Uy depend on a measurement made after applying
Ug can be implemented by unitaries Up and Up with
controlled gates.

The final global state.—Delaying all measurements al-
lows considering the final global state of the Eve +
Alice + Bob system before all measurements. To a state
|¢) sent by Alice, Eve attaches the probe |0F), applies U
to |0F)| ¢), and sends Bob his part of the system, N qubits.
Taking into account Bob’s probe |0?), the global state is
now [Ug ® I,,]105)|$)|0P), where I,, is the identity on
Bob’s probe space. Then, Bob applies U,, to his part of
the system, which corresponds to applying I ® U,, to the
previous global state where I is the identity on Eve’s
probe space. Eve’s attack on the returning qubits corre-
sponds to applying the unitary Uy ® I, and the final global
state is

[Ur ® Iy]lIz ® U, U ® Iy]10%)[$)I0%). (1)

Proposition 1.—If Ug induces no error on TEST bits,
there are states |E;) in Eve’s probe space s.t. Vi € {0, 1}V

Uglof)iy = [E)Ii). 2
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If, moreover, (Ug, Uy) induces no error on CTRL bits, then
there are states |F;) in Eve’s probe space s.t. Vi € {0, 1}V,

UrlEpli)y = |Fpli). 3)

Proof. —When Uy, is applied onto the computational
basis, Ug|0F)|i) = SIE D). If, for some index k there
is some j such that i, # j; and |Ei,j> # 0, then by choosing
m such that k € m, Bob can detect this as an error on bit k.
For Eve’s attack to be undetectable on TEST bits, Ur must
thus be such that Ug|05)|i) = |E; ;)|i), namely, |E; ;) =0
for any j # i, and |E;) = |E;,) satisfies Eq. (2). If Alice
sent state |i) for i € {0, 1}V, the global state is then
|EMi)i,) and Ug|Epli) = 3 ;|F; |j). In order for Eve’s
attack to be undetectable on Z-CTRL bits (whose index is
not in m), Up must be such that Ug|E)li) = |F; i),
namely, |F;;) =0 for any j # i and |F;) = |F;;) then
satisfies Eq. (3). |

Corollary 1.—If the attack (Ug, Ur) induces no error on
TEST and CTRL bits, then (for all i € {0, 1}" and all m) the
final global state (1) if |¢) = |i) is

|FIDi). “4)

We now show that if Eve’s attack is undetectable by
Alice and Bob, then Eve’s final state | F;) is independent of
the string i € {0, 1}. More precisely:

Proposition 2.—If (Ug, Up) is an attack that induces no

error on TEST and CTRL bits, and if |F;) is given by Eq. (4),
then for all i, i’ € {0, 1}V

i, i €{0, 11N = |F)) = |Fy). 5)

Proof.—Equation (5) means that any of the N bits of i €
{0, 1}V can be flipped at will without affecting Eve’s final
state |F;). We thus need only prove that for any two bit
strings i, i’ € {0, 1}" that differ only on one bit, say bit k,
the equality |F;) = |F;) holds. We assume w.l.g. that i, =
0 and i} = 1. If Alice chooses qubit k to be X-CTRL and
chooses all the other qubits to be those of i and i/, then this
means that the state |¢) she sends is % [1i) + |i")]. Assume

now that Bob reflects bit £, i.e., that k & m. This implies
that i,, = i/,. By Eq. (4) and linearity, the final state is % X
LIEHMD + |Fa)li)]li,,). Since we are interested only in
Alice’s kth qubit, we trace out all the other qubits in
Alice and Bob’s hands. The resulting state

1

E[IFDIO) +IF)ID] (6)
must be such that the probability of Alice measuring |—)
is 0. Replacing |0) and |1) by their value in terms of |+)
and | —), state (6) rewrites as 1[|F;) + [Fi)]|+) + 3[|F;) —
|F;)]l—) and the probability of measuring |—) is 0 iff § X
[F) = |Fn]=0,ie., |F;) = |Fy). U
Theorem 1.—The protocol is completely robust: for any
attack (Ug, Ur) inducing no error on TEST and CTRL bits,
Eve’s final state is independent of m and of the states |¢)
sent by Alice; Eve is thus left with no information on the

INFO string.

Proof.—By Proposition 2, there is a state | Fy;,,;) in Eve’s
probe space s.t. for all i € {0, 1}, Eve’s final state |F;) =
| Feina)- If Alice sends any superposition |¢) =3 c;|i)
and Bob chooses any set m of bits to be measured, then
Eq. (4), with |F;) = |Fgp,) for all i, and linearity gives
| Feina)> icili)li,,) as the final global state of the system;
Eve’s probe state |Fy;,,) is independent of |¢) and m and
therefore of the SIFT and INFO bits. O

Conclusion.—We presented a protocol for QKD with
one party who performs only classical operations and
proved its robustness. We believe that our work sheds light
on how much “quantumness” is required in order to
perform classically impossible tasks in general and secret
key distribution in particular. Notice that Theorem 1 holds
for a similar protocol where N = 1; Eve is then left with a
probe which is independent of Alice’s and Bob’s choices.
By induction, this independence holds for N = 1 repeti-
tions of the protocol, since Eve’s probe is kept indepen-
dent, round after round. Thus, the following protocol is
also completely robust: N > 1 qubits are sent one by one,
Alice sending a qubit only after receiving the previous one,
and Bob resending a qubit immediately after receiving it.
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