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We study the hydrodynamic expansion of a rotating strongly interacting Fermi gas by releasing a cigar-
shaped cloud with a known angular momentum from an optical trap. As the aspect ratio of the expanding
cloud approaches unity, the angular velocity increases, indicating quenching of the moment of inertia I to
as low as 0.05 of the rigid body value Irig. Remarkably, we observe this behavior in both the superfluid and
collisional normal fluid regimes, which obey nearly identical zero-viscosity irrotational hydrodynamics.
We attribute irrotational flow in the normal fluid to a decay of the rotational part of the stream velocity
during expansion, which occurs when the shear viscosity is negligible. Using conservation of angular
momentum, we directly observe a fundamental result of irrotational hydrodynamics, I=Irig � �2, where �
is the deformation parameter of the cloud.
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Strongly interacting Fermi gases [1] provide a unique
paradigm for exploring strongly interacting fluids in na-
ture, such as high temperature superfluids and exotic nor-
mal fluids including the quark-gluon plasma of the big
bang [2,3] or minimum viscosity strongly interacting fields
[4]. Strongly interacting Fermi gases exhibit hydrody-
namic flow not only in the superfluid regime, but also in
the normal regime where the origin of nearly perfect
hydrodynamics is of great interest [5]. For superfluids, a
well-known requirement is irrotational hydrodynamics,
i.e., r� v � 0, which is a consequence of the macro-
scopic wave function. However, for the normal fluid, per-
fect irrotational flow is not required or expected.

In this Letter, we study the hydrodynamic expansion of a
rotating strongly interacting Fermi gas of 6Li atoms. We
release a cigar-shaped cloud with a known angular mo-
mentum L from an optical trap, and measure the angular
velocity � about the y axis and the aspect ratio of the
principal axes (z, x) from the time-of-flight images. The
data are in excellent agreement with irrotational hydro-
dynamics [6–8] in the superfluid regime, and surprisingly
in the normal fluid regime as well. Conservation of angular
momentum enables a model-independent measurement of
the effective moment of inertia I � L=�. We find that I is
suppressed with respect to the rigid body value, Irig, di-
rectly testing a fundamental prediction of irrotational flow
[6],

 I=Irig � �2 � hz2 � x2i2=hz2 � x2i2; (1)

where the deformation parameter � and Irig are obtained
from the cloud images.

Previously, the hydrodynamics of a strongly interacting
Fermi gas with zero angular momentum has been observed
in expansion [1,9,10] and in collective modes [11–14].
Vortex lattices have been used to demonstrate superfluidity
in a strongly interacting Fermi gas [15,16].

In our experiments, a degenerate strongly interacting
Fermi gas is prepared by all-optical methods [1]. We
employ a 50:50 mixture of the two lowest hyperfine states
of 6Li atoms in a bias magnetic field near a broad Feshbach
resonance at 834 G [17]. After evaporation, the trap depth
is recompressed to U0=kB � 100 �K, which is large com-
pared to the energy per particle of the gas.

At the final trap depth U0, the measured oscillation fre-
quencies in the transverse directions are !x � 2��
2354�4� Hz and !y � 2�� 1992�2� Hz, while the axial
frequency is !z � 2�� 71:1�:3� Hz, producing a cigar-
shaped trap with !z=!x � 0:032. The total number of
atoms N typically is 1:3� 105. The corresponding Fermi
energy EF for an ideal (noninteracting) harmonically
trapped gas at the trap center is EF � @�3N!x!y!z�

1=3 �

2:4 �K kB.
Samples with energies well above the ground state are

prepared either by reducing the forced evaporation time or,
starting from near the ground state, by adding energy using
release and recapture. The cloud is held for 0.5 s to assure
equilibrium. The total energy E of the cloud is determined
in the universal, strongly interacting regime from the mean
square axial (z) cloud size, using E � 3m!2

zhz2i, where m
is the atom mass [18,19].

Once the trapped gas has been prepared in the desired
energy state, the trap is suddenly rotated as shown in Fig. 1.
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FIG. 1 (color online). Scheme to rotate the optical trap by
changing the frequency of an AOM.
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Rotation of the trap CO2 laser beam is accomplished by
changing the frequency of the acousto-optic modulator
(AOM) that controls the trap laser intensity, using a radio
frequency (rf) switch. When the frequency is changed, the
position of the beam on the final focusing lens translates.
This translation causes primarily a rotation of the cigar-
shaped trap at the focal point, about an axis (y) perpen-
dicular to the plane of the cigar-shaped trap. A scissors
mode [20] is excited by the rotation. Then the cloud is
permitted to oscillate in the trap for a chosen period that
determines the initial angular velocity of the cloud before
release.

Figure 2 shows cloud images as a function of expansion
time for the coldest samples, with a typical energy E �
0:56EF near the ground state [18]. When the gas is released
without rotation of the trap, Fig. 2 (top), the Fermi cloud
expands anisotropically, as previously predicted [21] and
observed [1,9]. In that case, the gas expands rapidly in the
narrow (x, y) directions of the cigar, while remaining
nearly stationary in the long (z) direction, inverting the
aspect ratio�x=�z as the cloud becomes elliptical in shape.

Quite different expansion dynamics occurs when the
cloud is rotating prior to release, Fig. 2 (middle) and
(bottom). In this case, the aspect ratio �x=�z initially
increases toward unity. However, as the aspect ratio ap-
proaches unity, the moment of inertia decreases and the
angular velocity of the principal axes increases to conserve
angular momentum as previously predicted [6] and ob-
served [7,8] in a superfluid Bose-Einstein condensate
(BEC). After the aspect ratio reaches a maximum less
than unity [6], it and the angular velocity begin to decrease
as the angle of the cigar-shaped cloud approaches a maxi-
mum value less than 90�.

Figure 3 shows the measured aspect ratio and the angle
of the principal axes versus expansion time, which are
determined from the cloud images. The measured density
profiles are fit with a two-dimensional Gaussian distribu-
tion, which takes the form A exp	�a~z2 � b~z ~x�c~x2
,
where ~z, ~x are laboratory coordinates. From the values of

a, b, and c, the aspect ratio of the rotated cloud and the
angle of the long z axis of the cloud with respect to the
laboratory ~z axis are determined.

We attempt to model the data for measurements near the
ground state (blue solid circles and green triangles of
Fig. 3), by using a zero temperature hydrodynamic theory
for the expansion of a rotating strongly interacting Fermi
gas in the superfluid regime. A theory of this type was first
used to describe the rotation and expansion of a weakly
interacting BEC [6,22]. The model consists of the Euler
and continuity equations for a superfluid, where the veloc-
ity field v is irrotational, i.e., r� v � 0. The driving force
for the expansion arises from the gradient of the chemical
potential, which we take to be that of a strongly interacting
Fermi gas [1,23]. We also include the force arising from
magnet field curvature, which changes the angular momen-
tum at the point of maximum aspect ratio by 10% and the
angle and aspect ratio at the longest release times by a few
percent. To determine the initial conditions for our model,
we directly measure the initial angular velocity and axial
cloud radius just after release, while assuming the trans-
verse radii are given by zero temperature values for our trap
frequencies. The results yield excellent agreement with all
of the Fermi gas angle and aspect ratio data, with no free
parameters, as shown in Fig. 3.

We make a model-independent measurement of the
effective moment of inertia I � L=�, where � is the
angular velocity of the principal axes of the cloud after
release and L � �0I0 is the angular momentum, which is
conserved during the expansion (we neglect the small
change arising from the magnetic potential). The angular
velocity � is calculated from the time derivative of a
polynomial fit to the angle versus time data. To determine
the initial moment of inertia I0, we note that for a cigar-
shaped cloud with a small aspect ratio �x=�z, the moment
of inertia for the irrotational fluid is nearly equal to the
rigid body value [6,8]. For our parameters I0 ’ Nmhz2i0,
within 0.3% accuracy, where hz2i0 is measured from the
cloud images. The measured effective moment of inertia

FIG. 2 (color online). Expansion of a rotating, strongly interacting Fermi gas. �0, initial angular velocity; !z, trap axial frequency.
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after release is then I � I0�0=�. The corresponding rigid
body moment of inertia is determined from the fit to the
cloud profile, Irig � Nmhx2 � z2i. Hence, we obtain
I=Irig � ��0=��I0=Irig.

We note that the measured I generally is not the equi-
librium moment of inertia of the rotating cloud, which
requires that the velocity fields of the normal and super-
fluid components reach their steady state values [23].
However, in our highly cigar-shaped trap, whether the
system is in equilibrium or not, the initial angular momen-
tum is essentially equal to the rigid body value, indepen-
dent of the superfluid and normal fluid composition. To see
this physically, note that for rotation about the y axis, the
initial stream velocity for irrotational flow is v � �0zi�
�0xk, while for rotational flow, v � �0zi��0xk. These
differ only for the z components, which are negligible as
the aspect ratio �x=�z tends to zero.

Figure 4 shows the measured minimum value of I=Irig as
a function of initial angular velocity �0. The smallest
values of I=Irig occur for the smallest �0. For the coldest
clouds (blue solid circles), where the energy of the gas is
close to that of the ground state, the gas is believed to be in
the superfluid regime [11,15,18]. In this case, we observe
values of I=Irig as small as 0.05, smaller than those ob-
tained from the scissors mode of a BEC of atoms [24,25].
The solid line shows I=Irig as predicted by the superfluid
hydrodynamic theory, which is in very good agreement
with the measurements.

Such nearly perfect irrotational flow usually arises only
in the superfluid regime. For example, normal weakly
interacting Bose gases expand ballistically above the criti-
cal temperature. We observe ballistic expansion of the
Fermi gas at 528 G, where the scattering length vanishes.
In this case, the aspect ratio asymptotically approaches
unity, and there is no increase in angular velocity.

In contrast, for a normal strongly interacting Fermi gas,
we observe quenching of the moment of inertia. To inves-
tigate the normal fluid regime, we increase E to 2:1EF,
which is well above the transition energy, Ec � 0:94EF as
estimated from the measured change in the behavior of the
entropy [18]. At E � 2:1EF, the gas is in the normal
regime, as the measured entropy versus energy near 2EF
closely coincides with that of an ideal gas [18]. The open
red circles in Fig. 3, show the aspect ratio and angle versus
time for an initial angular velocity �0=!z � 0:4 and E �
2:1EF. The results for the normal fluid are nearly identical
to those obtained for �0=!z � 0:4 in the superfluid regime
(blue solid circles).
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FIG. 4 (color online). Quenching of the moment of inertia
versus initial angular velocity �0. Imin=Irig is the minimum
moment of inertia measured during expansion in units of rigid
body value. Blue solid circles: initial energy before rotation
below the superfluid transition energy Ec � 0:94EF. Red open
circles: initial energy above Ec. Green solid line: Prediction for
irrotational flow. Inset shows the energy for each data point with
the dashed line at Ec.
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FIG. 3 (color online). Aspect ratio and angle of the principal axis versus time. Orange squares (aspect ratio for �0 � 0); blue solid
circles (�0=!z � 0:40, E=EF � 0:56); red open circles (�0=!z � 0:40, E=EF � 2:1); green triangles (�0=!z � 1:12, E=EF �
0:56). The solid, dashed, and dotted lines are the theoretical calculations using the measured initial conditions. The gray dot-dashed
line shows the energy-independent predictions for a ballistic gas with �0=!z � 0:40.
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We attribute the observed irrotational flow in the normal
strongly interacting fluid to low viscosity collisional hy-
drodynamics. For release from a harmonic trap, the stream
velocity v is linear in the laboratory coordinates ~x.
Assuming rotation about the y axis, we have v~x � �x~x�
�����~z, v~y � �y~y, v~z � �z~z� �����~x. Here, �i�t�
and ��t� describe the irrotational velocity field and ��t�
the rotational part. With zero viscosity, the hydrodynamic
equations of motion yield the result @�=@t� ��x �
�z�� � 0. After release, the stream velocity increases,
and �x becomes the order of !x. Hence, � decays rapidly,
on the time scale 1=!x � 1=�, 1=!z. For negligible
viscosity, the gas cannot maintain rigid rotation during
expansion.

We see from Fig. 4 that the moment of inertia is
quenched for energies both above and below the superfluid
transition. Irrotational hydrodynamics generally requires
the quenched moment of inertia to be given by Eq. (1),
where the deformation parameter � is computed with
respect to the principal axes. Figure 5 compares the mea-
sured minimum values of I=Irigid with the values of �2

obtained from the measured cloud aspect ratios. The data
directly verify that this fundamental prediction is valid in
both the normal and superfluid regimes of a strongly
interacting Fermi gas.
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FIG. 5 (color online). Quenching of the moment of inertia
versus the square of the measured cloud deformation factor �.
Blue solid circles: initial energy below the superfluid transition
energy Ec � 0:94EF. Red open circles: initial energy above Ec.
Green solid line: prediction for irrotational flow.
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