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Asymmetry in Colloidal Diffusion near a Rigid Wall
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The three-dimensional motion of single colloidal particles close to a plane wall is measured by optical
microscopy. In accordance with classical theoretical predictions, we find an asymmetric motion of the
particles in the directions parallel and perpendicular to the wall. We also find that, close to the wall, the
distribution functions of perpendicular steps are asymmetric, being shorter toward the wall and longer

away from it.
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A classical problem in colloidal physics is the descrip-
tion of the motion of single colloidal particles near a flat
wall. In the absence of particle-wall direct interactions,
other than excluded volume, one is concerned here with the
treatment of their complex hydrodynamic interactions.
Calculations of the one-body friction, based on linearized
creeping flow hydrodynamics, have been carried out pre-
dicting dramatic changes in that quantity, namely, close to
a wall the friction becomes a tensor whose components
increase monotonically as the particle-wall distance h
decreases [1,2]. Verification of such predictions has been
a challenge to experimentalists for more than four dec-
ades. Besides its scientific importance, such asymmetry
makes colloidal motion a highly sensitive probe of the
presence of boundaries, both in distance and orientation.
Hence, its accurate description and measurement could be
of great importance in various fields of science and tech-
nology to probe the structure (and dynamics) of complex
environments.

In the bulk, the particles’ mean squared displacement
(MSD) (Ar?(#)) obeys the scalar equation (Ar?(¢)) = 6Djt,
where Dy, is the free-diffusion constant, a scalar quantity
determined by the fluid and particle properties through the
Stokes-Einstein relation (namely, D, = kT /37no, with
kT being the thermal energy, n the bulk shear viscosity
of the fluid, and o the particle’s hydrodynamic diameter).
Close to a wall, the MSD is split in the motion parallel
[along the plane (x, y)] and perpendicular (along the di-
rection z) to the wall, with both quantities depending on h:

(Axi (1)) = (Ayi (1)) = 2Dy(h)1, (1)

(Azj (1) = 2D (h)t, 2

where Ax;,(¢) is the displacement along the direction x
during the time ¢, of a particle positioned at a distance &
from the wall at ¢+ = 0. The angular parentheses represent
an equilibrium ensemble average. Similar definitions fol-
low for the displacements along the directions y and z. The
quantities Dy(h) and D (h) are the diffusion coefficients
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corresponding to the motion of the particle along the di-
rections parallel and perpendicular to the wall, respec-
tively. The theoretical functional forms for both coeffi-
cients are provided in the literature, and are reproduced be-
low when they are used in comparison with the experimen-
tal results of this work. In addition to the asymmetry in the
parallel and perpendicular directions, the analysis of the
perpendicular motion reveals an asymmetric distribution of
steps along the z direction when the particle moves close to
the wall; i.e., the distribution functions of perpendicular
displacements P,(Az, t) deviate from the Gaussian form,
being shorter toward the wall and longer away from it.

Experimental studies of the diffusion of colloidal par-
ticles close to a rigid wall, performed using evanescent
wave dynamic light scattering (introduced in Ref. [3] in the
context of polymer physics), have reported an increasing
hindering of the particles diffusion as they are closer to the
wall [4,5], and an asymmetry between the parallel and
perpendicular diffusion modes [6]. Total internal reflection
fluorescence microscopy has also been used to measure
both modes, finding agreement with the theoretical predic-
tions for the parallel mode but discrepancies for the per-
pendicular mode [7]. Both techniques measure the
dynamics of the particles close to the surface of the wall
within a range of distances determined by the penetration
depth of the evanescent wave (on the order of the wave-
length of the illuminating light). On the other hand, the
perpendicular and parallel diffusion of colloidal particles
confined between two plates have been measured by opti-
cal video microscopy [8]. In such experiments, the z coor-
dinate is inferred from the particle’s diffraction pattern by
comparing it with a calibration set of images. That method
allows tracking of three-dimensional (3D) excursions, but
it is restricted to short trajectories of extension comparable
to the particle’s diameter.

We present here a direct measurement of the diffusion
motion of a single colloidal particle near a rigid wall.
Figure 1 shows a scheme of the system. We have imple-
mented an optical microscopy method that allows us to
track the actual 3D particle’s trajectory in a wide range of
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FIG. 1. Scheme of the system: a colloidal particle moving near
a rigid plane, with & being the particle-wall separation. The
diffusion of the particle parallel to the wall Dy(h) differs from
that perpendicular to the wall D | (h). There is also an asymmetry
in the perpendicular steps.

the (x, y, z) space. From the trajectory we determine,
directly and independently, the mean squared displace-
ments along the three spatial directions as functions of 4.
The system studied here consists of highly dilute suspen-
sions of fluorescent polystyrene spheres of diameter o =
1.01 wm, with 3% of size polydispersity. The suspending
fluid is distilled deionized water at 10 mM of NaCl. The
suspension is loaded in a glass cell consisting of a slide and
a cover slip separated by spacers of thickness 300 um. The
sample is placed on the stage of an optical fluorescence
microscope, equipped with a digital charge coupled device
(CCD) and a piezo nanofocussing device with nanometer
vertical resolution. The sample is allowed to equilibrate at
room temperature for 3 h. During this time, particles settle
close to the bottom surface due to gravity but they remain
in constant Brownian motion. The added electrolyte pro-
vides a screening length of 5 = 2 nm. In order to avoid any
influence of both the van der Waals and the electrostatic
interactions between the particles and the glass surface, in
this work we only consider the motion of particles whose
surface is away from the wall distances several times the
screening length. Therefore, in our experiments the only
interactions between a particle and the wall are hydrody-
namic. We observed sites in the sample where only two
particles were within the field of view of 150 X 150 um?2.
One of the particles was moving close to the wall while the
second particle was fixed to it (by van der Waals forces)
and it is used as a reference to locate the surface of the wall.
In all cases, both particles were separated more than
30 pum, avoiding in this way any influence of the fixed
particle on the motion of the mobile one.

The tracking of the particles’ 3D trajectories is done as
follows. The sample is observed from a top view using
fluorescence illumination. A particle in the focal plane of
the microscope optics appears as a bright circular object
against a dark background. However, when the particle is
out of focus, the optics detects a cross section of the point
spread function (PSF) of the particle [9,10]. The image at
the focal plane of a particle out of focus in the direction
away from the microscope objective consists of concentric
rings whose number and diameter increase monotonically

with its distance from the focal plane. Figure 2 shows
images of the pattern observed when the particle is at
distances of 8.6 um [Fig. 2(a)] and 6.9 um [Fig. 2(b)]
from the focal plane, away from the microscope objective.
As one can see here, the diameter of the more external ring
is larger for particles further away from the focal plane.
Figure 2(c) shows the experimental determination of the
(monotonic) correspondence curve between the radius R of
the external ring and the distance Az of the particles’ center
from the focal plane. Such a curve is determined by taking
images of a fixed particle at the bottom surface and moving
the focal plane of the objective upward using the piezo-
electric device attached to it. Thus, a set of images of
known Az are obtained, and the corresponding value of
R is determined in each of them as follows. The position (x,
y) of the center of the pattern is determined using a
standard procedure [11]. Then, the average profile of light
intensity I(r) is measured in each image as a function of the
radial distance r from the center of the pattern; i.e., we
average the light intensity along a ring [centered at (x, y)]
of radius r and 1 pixel width. The inset in Fig. 2(c) shows a
typical profile I(r) consisting of local maxima and minima,
in correspondence with the rings. As one can see here, the
external ring shows a well-defined maximum whose posi-
tion R can be located quite accurately. In Fig. 2(c) we plot
two sets of measurements of R vs Az (symbols), showing
the reproducibility of the relation. The solid line is an
exponential function, which is the best fit to both sets of
experimental data. Thus, given the monotonic relation
between R and Az, we can use the former as a direct
measurement of the z coordinate of the particle (with

AZ (um)

FIG. 2. Images of the cross section of the PSF of a 1.01 um
fluorescent particle out of focus 8.6 um (a) and 6.9 pwm (b), in
the direction away from the microscope objective. The relation
between the radius R of the external ring of the PSF and the
distance of the particle to the focal plane Az is shown in (c), the
symbols represent two sets of experimental data and the solid
line a fit to an exponential function. The inset in (c) shows a
typical profile of the light intensity.
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respect to the focal plane). Thus, the 3D trajectory of a
single mobile particle is obtained by analyzing consecutive
frames, with a time interval Ar = 33.33 ms, to determine
the three spatial coordinates in each of them as described
here.

As we explained above, we locate sites in the sample
with only two particles in the field of view, one moving
close to the bottom surface and the other fixed to it (the
reference to determine /). The motion of the mobile par-
ticle is recorded in series of 2000 consecutive frames
which are analyzed to obtain the particle’s 3D trajectory.
During one run of 2000A¢, the trajectory extends over
several times o along z, sampling in this way a wide range
of the distance 4. In order to determine the dependence on
h of the diffusion coefficients, we define discrete values of
h with a width of o/2. Then, we divide the trajectory in
short traces of N consecutive time steps. The initial posi-
tion z of each short trace will fall within one of the discrete
values of h. From the short trajectories we determine the
MSDs along x, v, and z, pertaining to each value of A. The
diffusion coefficients are then obtained as the initial slope
of the corresponding MSD as indicated by Egs. (1) and (2).
The results shown below are the average of data from
several (~200) different trajectories of 2000 time steps
each, observed both at different sites on the same sample
and in different samples, to ensure reproducibility and to
avoid bias from sample preparation. All the results re-
ported here correspond to the analysis of the trajectories
divided in segments of N = 5 time steps, but other values
of N within the range of 3 to 7 lead to similar results.

Figure 3 shows the results obtained for the normalized
diffusion coefficient parallel to the wall (symbols) as a
function of the particle-wall separation 4. The normalizing
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FIG. 3. Diffusion coefficient for the motion parallel to the wall
as a function of A, experiment (symbols) and theory (dashed
line). The inset shows the 3D trajectory of a particle diffusing
near the wall, located at z = 0.

quantity Dy is the average value of the self-diffusion
coefficient of different isolated particles, measured far
away from the wall where the diffusion is isotropic and
independent of 4. Dy is found to be very close (within 2%)
of the theoretical value D, calculated using the nominal
diameter. As one can see here, the effect of the particle-
wall hydrodynamic interactions on the particles’ parallel
motion leads to a significant reduction of Dj(h) as the
particle approaches the wall. The effect is of long range,
spanning over more than 20 particles’ diameters where
Dy(h) slowly approaches its asymptotic value Dg. In
Fig. 3 we compare our experimental data with the predic-
tions of Eq. (3) (dashed line), taken from Ref. [2], given as

Do _,_38 In(1 — B) + 0.0298 + 0.04973 82
Dy (h) 15 ’ '

—0.12498% + - - -, 3)

where B8 = o /2h. As one can see here, there is an excel-
lent agreement between experiment and theory over a wide
range of particle-wall separations. As a manner to illustrate
the capabilities of the method employed here, in the inset
of Fig. 3 we show the 3D trajectory of a particle diffusing
close to the wall. As one can see here, the effect of gravity
is only evident at long times (~1000A¢), but not at the
short-time scale of few time steps where we determine the
diffusion coefficients.

Figure 4 shows the experimental results (solid circles)
for the diffusion coefficient corresponding to the perpen-
dicular motion. As one can see here, the hindering of the
perpendicular motion as the particle approaches the wall is
more pronounced than that for the parallel motion, which is
in agreement with the theoretical results of Eq. (4) (dashed
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FIG. 4. Diffusion coefficient for the perpendicular motion
(solid circles). The dashed line represents the prediction of
Eq. (4). The inset shows P,(Az, 1) (bars), for 3 times, measured
at h = 1o. Solid lines represent Gaussian functions of width
2D (h)t; see text.
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line), taken from Ref. [1], given as

. > nn+1)
h
— ; 2n—D)(2n +3)
2sinh(2n + e + (2n + 1) sinh2a
|:4sinh2(n +Pa — (2n + 1)?sinh’a }

Dy, 4
D;(h) 3

4

where a = cosh™!(2h/0).

From the 3D trajectories one can determine other, more
fundamental quantities, describing single particle dynam-
ics, namely, the density probability distribution functions
of particles’ steps Pj,(Ax, 1), P,(Ay, t) and P),(Az, t), where
P;,(Ax, t)dx is the probability that a displacement along the
direction x during the time ¢, of a particle located at z = h
at time ¢ = 0, falls around the value Ax within a width dx
(similar definitions follow for distributions along y and z).
In the bulk, these distribution functions are Gaussian func-
tions of width 2D¢t. However, close to a wall these func-
tions depend on the direction of motion and also on the
particles separation to the wall. In our system, the distri-
bution functions along x and y are indeed symmetric and
follow Gaussian functions of width 2Dj(h)t (data not
shown). In contrast, the distributions along z are not sym-
metrically distributed around Az,(f) = 0. The inset in
Fig. 4 shows P,(Agz, r), measured at h = o (bars), for 3
different times within the interval used to determine the
diffusion coefficients. Here one can see clearly the asym-
metry in the step distribution functions, being shorter in the
direction toward the wall and longer in the direction away
from it. One can also see that such asymmetry increases
with time. For comparison, we present in solid lines the
corresponding Gaussian functions [1/47D | (h)r]1/? X
exp[(Az — h)?/4D | (h)f] where D | (h) is calculated using
Eq. (4). In order to rule out any effect from gravity in this
asymmetry, measurements were also carried out on parti-
cles diffusing close to the top surface of the sample cell
using an inverted microscope. Similar results are obtained
from both setups, and in Fig. 4 the results presented are the
average of both measurements. Let us note here, that each
one of the histograms in Fig. 4 was constructed from
~1500 measured values of Az,,.

An asymmetry in the distribution of steps is predicted
for one-dimensional random walks in the presence of a
reflecting barrier, which reflects back the long trajectories
in the direction toward it [12]. In such case (Az(?)) in-
creases with time, provided the time is long enough that the
particle can reach the barrier. In the inset of Fig. 4 we show
the results for the distribution functions measured at h =
lo. There, one can see that Az toward the wall is indeed
impeded to reach values larger than its maximum ap-
proaching distance & — o /2. Thus, the predictions of the

reflecting barrier model seem to be applicable to this case.
However, in our system we measure P,(Az, f) in a wide
range of values of & and the asymmetry is observed for
values of & up to 7o, although it becomes less pronounced
as h increases. As explained above, at each value of & we
consider only the local diffusion (i.e., short-time scale),
such that the particles’ excursions along all directions are
smaller than the particles’ size. Thus, for 4 = 20 the
asymmetry can not be solely the result of the reflected
trajectories at the wall, but it also contains the effect of
the long-range hydrodynamic interactions which contrib-
ute to the hindering (reflection) of long excursions toward
the wall, even when the particles are not close to contact.

In this work we address a classical problem in colloidal
hydrodynamics, namely, the effect of the hydrodynamic
interactions on the motion of single colloidal particles near
a rigid plane wall. Our results confirm the long-standing
theoretical predictions of the asymmetry between the par-
allel and perpendicular motions. We also report an asym-
metry in the distribution of perpendicular steps, due to the
particles’ trajectories reflection by the wall, an effect found
here to be enhanced by the particle-wall hydrodynamic
interactions.
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