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All-atom lattice-dynamical calculations are reported for a crystalline protein, ribonuclease A. The
sound velocities, density of states, heat capacity (Cy) and thermal diffuse scattering are all consistent with
available experimental data. Cy, « T for T < 35 K, significantly deviating from a Debye solid. In
Bragg peak vicinity, inelastic scattering of x rays by phonons is found to originate from acoustic mode
scattering. The results suggest an approach to protein crystal physics combining all-atom lattice-
dynamical calculations with experiments on next-generation neutron sources.
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X-ray protein crystallography has become a cornerstone
of molecular biophysics and has been used to determine
more than 33 500 protein crystal structures [1]. However,
comprehension of protein function requires that structural
coordinates be complemented by dynamical information.
Crystalline protein systems are potentially rich sources of
information on both protein:protein interactions and inter-
nal protein dynamics. Interprotein crystalline interactions
give rise to lattice dynamics, which can be calculated using
the harmonic approximation to the intermolecular potential
function. Lattice dynamics reduces the translational crystal
symmetry, giving rise to thermal diffuse scattering (TDS)
in the diffraction pattern. This inelastic TDS provides
direct information on correlated motions, which cannot
be inferred from the elastic Bragg scattering [2—4].

The vast majority of computational protein biophysics
has been performed using extensively developed atomic-
detail potential functions. However, due to computational
limitations, the large size of protein unit cells (containing
the order of 103~10° atoms) has hitherto precluded lattice-
dynamical calculations using these potential functions. In
this Letter, the first all-atom lattice-dynamical calculation
for a crystalline globular protein is reported.

Bovine pancreatic ribonuclease A (RNase) was chosen
for the study due to its relatively small unit cell, the
existence of a high-resolution diffraction analysis with all
hydrogen atoms being resolved [5], and the existence of
inelastic x-ray scattering data in the vicinity of Bragg peaks
[6], which is likely to originate from scattering by lattice
phonons. The vibrational density of states, sound veloc-
ities, and specific heat capacities are also derived and
compared with experiment. In cases where experimental
data for RNase are lacking comparison is made with other
globular proteins that share similar physical and thermo-
dynamical properties [7].

All calculations were performed on the monoclinic
RNase crystal, with unit cell dimensions a = 30.18 A,
b =3840 A, ¢ =53.32 A, and B = 105.85°, composed
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of two protein molecules in the space-group symmetry
P2, 902 water molecules and 16 chloride counter ions
resulting in an electrically neutral system, in total compris-
ing 6442 atoms. Atomic interactions were calculated using
the CHARMM molecular mechanics force field and parame-
ter set 22 [8,9] with the water molecules represented using
the three-point transferable intermolecular potential func-
tion [10]. Electr0§tatic and van der Waals interactions were
truncated at 13 A using smooth switching (between 10—
13 A) and shifting functions, respectively. The system was
energy-minimized using a scheme of alternating cycles of
heating and minimization, reaching a final gradient
<4.2X107* Jmol ' A1

In the harmonic approximation, the equations of mo-
tion for the atomic displacements from their equilibrium
positions can be decoupled using the plane wave approach
[11,12], yielding eigenmodes u(q) and associated eigen-
frequencies w(q), commonly referred to as the disper-
sion relations. In Fig. 1 are shown w(q) for the RNase
crystal along the principal crystal directions. Apart from
the acoustic and lowest-frequency optic modes, the pho-
non dispersion curves show little dependence on the wave
vector, indicating that most unit-cell, and thus protein,
internal vibrations are independent of the crystal en-
vironment. In contrast, strong dispersion has been found
for some molecular crystals [13—15]. However, the rela-
tive strength of crystal contacts in protein systems is
weaker than, for example, the hydrogen bonds in these
molecular crystals and, therefore, the higher-frequency
optic modes for proteins may, in general, exhibit rela-
tively little dispersion. For each acoustic branch the mixing
of longitudinal (LA) and transverse (TA) character was
computed using the projection &(q) =1 — (ul, - q’) at
gn = 0.1, where (-) denotes the average over all protein
atoms and the prime indicates that the vectors are normal-
ized to unity: these results are also included in Fig. 1.
Along the principal crystal directions the mixing is less
than 3%.
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FIG. 1. Dispersion relations for the acoustic [predominantly

transverse (TA) or longitudinal (LA); subscripts indicate TA-LA
mixing at gq;;; = 0.1] and 12 lowest-frequency optical modes.
Symbols are data points with connecting lines drawn for conve-
nience. g, = q(27/dy) ", with djy; being the spacing of the
real lattice. v = w/27 is the true frequency. Arrows indicate
anticrossings discussed in the text.

The arrows in Fig. 1 indicate selected regions of anti-
crossing in the dispersion relations. This phenomenon has
been observed in a variety of systems, ranging from com-
paratively simple ionic crystals to more complex semicon-
ductor heterostructures and molecular crystals like
L-alanine [13,14] and naphthalene [15]. When two modes
anticross, their associated eigenvectors can mix. As an
example of this, at g;;; = 0.3 the mode marked LA along
¢” in Fig. 1 exchanges its LA character with the lowest-
frequency optical mode, which inclines from above and
subsequently transmits this LA character further to the
optical mode with the next-higher frequency.

Figure 1 also shows that, along a*, b*, and ¢*, the TA
branches are approximately linear over the whole Brillouin
zone and, at the zone boundary, for each of these branches
there exists an associated optic branch. This behavior
would be expected for a system with a Brillouin zone twice
as large [16]. Along b* and ¢* this zone doubling is due to
the twofold screw axis. Wave vectors along b* are insensi-
tive to rotations around the screw axis and, therefore, the
unit cell appears to have only half the actual repeat dis-
tance. For displacements perpendicular to the z axis the
repeat distance is exactly one-half that of the unit cell.
These findings demonstrate that the acoustic and lowest-
frequency optic modes, which describe intermolecular vi-
brations within the whole unit cell, are governed by the

space-group symmetric arrangement of the protein mole-
cules, whereas the protein internal motions and the dynam-
ics of the disordered solvent molecules are reflected in the
higher-frequency optic modes. Furthermore, these results
are complementary to studies of single proteins in solution
for which the intramolecular dynamics has been found to
be slaved to the solvent fluctuations [17].

From the acoustic branches in Fig. 1 the anisotropic

velocities of sound v were determined using v = 22 =

dq
2—’;” in the long-wavelength limit (Table I). The longitudinal

v range from 3372.5 to 3713.5 ms~! with the average over
all directions being 3585 + 185 ms™!, approximately
double the room-temperature experimental value of
UrNase = 1784 = 72 ms™! [18]. This difference is due, in
part, to the temperature dependence of v. Proteins in
general [19,20], and RNase in particular [21], exhibit a
dynamical transition with temperature resembling the glass
transition. For other polymer systems exhibiting a glass
transition, v has been found to decrease approximately
linearly with increasing temperature [22-25], with slopes
ranging from —4.3 to —2.2 ms~' K™! for polyethylene
glycol (PEG) in CCly [25] and poly(4-methyl-1-pentene)
(P4AMP1) [22], respectively, and in particular
—2.5ms ' K™! for crystals of lysozyme [hen egg-white
lysozyme (HEWL) [24]]. Moreover, whereas an earlier
measurement (using laser-generated ultrasound, the same
technique as in Ref. [18]) at room temperature yielded
vgewr = 1817 ms™! [24], a more recent study using
Brillouin scattering found a significantly larger vypwr, =
2310 = 80 ms™! [26]. Thus, combining the above consid-
erations, the calculated sound velocity is not obviously
inconsistent with the available experimental data.

The question arises as to whether aspects of the disper-
sion relations in Fig. 1 can be quantitatively reproduced
using a simplified model, in which each protein molecule is
represented by a rigid body of mass M. In this case, the
RNase crystal space group can be represented by a one-site
(mass 2M, force constants 2G, ;) linear chain along a and
b, and a two-site (M, G ) chain along ¢, with G; implicitly
incorporating the solvent. G; is related to the macroscopic
elastic constant, C; = G,[? with [; = {a, b, c}, and is given
by G; = v ,M/I? [16]. With M = 13691 u and v, from
Table I, the protein:protein coupling force constants are
Gupe = {28.4,20.7,22.1} kgs™2.  The comparatively
larger G, is likely to be due to the composition of the
protein:protein interfaces, which involve a rather rigid
a-helix: B-sheet structure along a, but more flexible

TABLE I. Sound velocities, v, along a*, b*, and c¢*. The
subscript to v indicates TA or LA modes and units are in ms™!.
a* = |[100]] b* =1]010]| <¢*=[|001]| Mean value
vy, 1722.9 1716.0 1695.3 1711 = 14
vr, 1819.5 1908.8 1911.2 1880 *+ 52
vy 33725 3667.7 3713.5 3585 = 185
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loop:loop structures along b and c. The optical mode
frequency at [000] can be estimated along ¢* yielding v =
(77(2;—;"14)0'5 ~ (.31 THz which is in excellent agreement with
the results of the atomic-detail model (Fig. 1).

The dispersion relations shown in Fig. 1 allow the
average density of states g(v) to be calculated. In general,
g(v) follows from averaging w(q) over the whole Brillouin
zone. For practical application, however, this averaging
must be restricted to a coarse grid in reciprocal space.
Here it was found that, due to the low dispersion of the
optical modes, it suffices to restrict this grid to the recip-
rocal lattice points shown in Fig. 1. g(») was then esti-
mated by averaging over a*, b*, and ¢* and is shown in
Fig. 2. At low frequency, g(») exhibits a pronounced peak
centered at 2.1 THz. Figure 2 also shows the experimental
profile for dihydrofolate reductase (DHFR) which has been
determined using inelastic neutron scattering [27]. The
low-frequency peak in g(v) is of closely similar absolute
amplitude and position. It has previously been found that
the position of this peak varies little with the particular
protein [28]. Therefore, the calculated g(») is in agreement
with the existing experimental data.

From g(v), the temperature-dependent constant-volume
heat capacity Cy can be calculated using

oo(ts)
? A v, (1)
[xe(i) ~ 1]
where A v is the width of the frequency bins and i runs over
all bins. The result is shown in Fig. 3. The inset to Fig. 3
shows that, at low temperature, Cy cannot be adequately
described using the Debye T2 law. Rather, Cy « T? with
b = 1.68 for T = 35 K, which is in excellent agreement
with the experimental range, b = 1.60-1.77, determined
for other globular hydrated proteins [7].

Figure 3 also shows a comparison with experimental
data for dry crystals of RNase [29] and RNase in aqueous
solution [30]. The form of the calculated profile is very
similar to that of dry RNase, with most of the average

h2
Cy(T) = WZ&’(’H)”?
B i

— RNase y
- DHFR Exp.

750

500

250

g(v) [THZ ]

v [ THz ]

FIG. 2. Density of states g(») calculated from the phonon
dispersion relation w(q) and averaged over a*, b*, and c".
Also shown is 120 K experimental data for hydrated (0.3 g
water/g dry protein) powders of dihydrofolate reductase [27].
For comparison, the experimental data have been scaled by the
ratio (3.05) of DHFR hydrogens (which dominate the experi-
mental neutron scattering) to RNase protein atoms.

difference of 0.2 Jg~! K™! consistent with the experimen-
tal dehydration. The difference between the constant-
volume and constant-pressure heat capacities, Cy and
Cp, respectively, has been estimated for proteins to be =
5% at 300 K and decreases rapidly with decreasing tem-
perature [29]. Because of the onset of anharmonic motions
at the dynamical transition temperature, =200 K, Cy can
deviate from the harmonic description [Eq. (1)], as has
been observed for hydrated crystals of lysozyme for which
Cp was found to increase relative to the harmonic behavior
in the range 150-220 K [31].

The satisfactory agreement with various experiments
described above indicates that the present phonon model
is a useful description of protein crystal vibrations.
Phonons inelastically scatter x rays and our final calcula-
tions are dedicated to this so-called thermal diffuse scat-
tering. TDS is centered at the Bragg peaks. Understanding
TDS will provide dynamical information and also result in
more accurate protein structural models.

For an inelastic scattering process, involving the emis-
sion or absorption of a single phonon, the scattering inten-
sity can be written as [12,32]

k— h i (G —q) - ul |2
I = 72 - § WetilG-q)r, 2~ 1/ 7

« coth( Y4 2)
“ <2kBT>’

where k and k, are the magnitudes of the scattered and
incident wave vectors, respectively, W, is the Debye-
Waller factor, G is the nearest reciprocal lattice point,
and j is the mode index. Using Eq. (2), the scattering
profile was calculated and is shown along b* in Fig. 4. [,
is composed of a slowly varying nonmonotonic baseline,
found to be due to inelastic scattering by the optic modes
(j > 3), onto which intense peaks of varying height and
width are superposed at regular intervals. The peaks are
centered at the Bragg peak locations. In the vicinity of the

T T
1.5 - |— RNase (Cv)
—_ dry RNase (C,) Exp.
o o+ aq. RNase (C,) Exp. 3
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FIG. 3. Heat capacity Cy of the RNase crystal calculated using
Eq. (1). Experimental heat capacities Cp for dry RNase crystals
[29] and RNase in aqueous solution [30] are also shown. The
inset shows the low-temperature regime in more detail. Dotted
and dashed lines are least-squares fits of the Debye T3-law and a
T’-function, respectively, to CXNa¢ for T < 35 K.
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FIG. 4. Inelastic x-ray scattering /;,(¢) given by Eq. (2) versus
g, along b*, calculated from all 19326 phonons, at 100 K. The ¢
range is chosen to include the first 30 Bragg peaks, correspond-
ing to 1.28 A real-space resolution. The left inset shows experi-
mental data for a single 6 A-resolution reflection for RNase [6]
and the least-squares fit y(q) = Ay + A;q~2. The right inset
shows the root-mean-square deviation, A ={[(I,, —y)/L;,]})*>,
for each Bragg peak.

Bragg peaks (small g) the frequency weighting in Eq. (2)
obeys the relation coth(x) o« x~! for small x, hence I, =
ijz and therefore inelastic scattering from acoustic modes
(j = 3, v « g) may be dominant. To determine whether the
peaks in [;, are indeed due to purely acoustic scattering, the
deviation from the theoretical ¢~2 dependence of I;, was
calculated (see caption to Fig. 4 for details). The results are
presented in an inset to Fig. 4 and show a maximal and
average deviation of 7% and 3%, respectively. Therefore,
the peaks in [, are well approximated by the contribution
from the acoustic mode scattering. This finding is consis-
tent with the experimental observation, also shown in
Fig. 4, that, for the same RNaseo: crystal [6], the diffuse
scattering intensity around a 6 A resolution Bragg peak
varies approximately as I « g~ 2.

The lattice-dynamical calculations presented here ex-
tend the domain of application of a fundamental technique
in theoretical solid-state physics to the study of crystalline
proteins. In principle, the dispersion relations can be de-
termined experimentally using inelastic neutron scattering,
but the requirements of large protein crystals and high
neutron flux have prevented such studies in the past.
However, the coming online of high intensity neutron
sources like the Spallation Neutron Source at Oak Ridge
National Laboratory, and the satisfactory agreement with
existing experimental data found here, suggest a combined
theoretical and experimental lattice-dynamical approach
that should yield a mine of information on protein crystals
and the physics of interacting proteins.
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