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We study a recently introduced model of one-component glass-forming liquids whose constituents
interact with an anisotropic potential. This system is interesting per se and as a model of liquids such as
glycerol (interacting via hydrogen bonds) which are excellent glass formers. We work out the statistical
mechanics of this system, encoding the liquid and glass disorder using appropriate quasiparticles (36 of
them). The theory provides a full explanation of the glass transition phenomenology, including the
identification of a diverging length scale and a relation between the structural changes and the diverging
relaxation times.
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The study of associated liquids such as glycerol as glass
formers has a long and rich history [1], but until now the
role of the anisotropic hydrogen bonds, while clearly im-
portant in frustrating crystallization, has not been made
explicit. Recently, a model of one-component liquids with
an anisotropic interaction potential was introduced [2],
together with numerical simulations in two dimensions
that demonstrated clearly the importance of the anisotropic
interaction in frustrating crystallization and allowing the
formation of a glassy state of matter. This model is im-
portant in stressing the fact that even simple one-
component liquids may not crystallize if the local symme-
try of the interaction potential does not perfectly match the
symmetry of the equilibrium crystal. It is worthwhile,
therefore, to analyze further this example of glass forma-
tion and put it in the general context of the glass transition.
In this Letter, we present a theory of this model, construct-
ing its statistical mechanics and providing an understand-
ing of the phenomenology of its glass transition, including
an identification of a diverging length and explaining the
diverging time scales. Our analysis allows putting this
interesting example of glass formation on the same footing
as other classical glass formers such as binary mixtures
with central potentials [3,4], stressing the generality of the
approach [5,6] and of the glass transition phenomenon at
the same time.

Particles of mass m in this model interact via

 U�rij; �i; �j� � �U�rij� � �U�rij; �i; �j�; (1)

where rij is the distance between the two particles i and j.
The first term on the right-hand side of (1) is the standard
isotropic Lennard-Jones potential
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whereas the anisotropic part of the potential is given by
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h�x� � �1� x2�3 for jxj< 1;

h�x� � 0 for jxj � 1:

(3)

Here �i (�j) is the included angle between the relative
vector rij � ri � rj and a unit vector ui (uj) (referred to
below as ‘‘spin’’) which represents the orientation of the
axis of particle i (j). The function h���� �0�=�c� (with
�0 � 126� and �c � 53:1�) has a maximum at � � �0, and
thus �0 is a favored value of �i. Thus, the anisotropic term
in the potential favors structures of fivefold symmetry. The
parameter � controls the tendency of fivefold symmetry
and, therefore, of the frustration against crystallization.
The units of mass, length, time, and temperature are m,
�, � � �

����������
m=�

p
, and �=kB, respectively, with kB being

Boltzmann’s constant.
According to the numerical simulations presented in

Ref. [2], for �< 0:6 this system crystallizes upon reducing
the temperature. The ground state crystal has an elongated
hexagonal structure with antiferromagnetic ordering of the
spins ui, but the actual crystal that is obtained upon cooling
is a ‘‘plastic crystal’’ with hexagonal spatial order but with
spin disorder. For �> 0:6 the system fails to crystallize
upon cooling. The relaxation times were measured by
monitoring the rotational autocorrelation functions
CR�t� � �1=N�

P
ihui�t� 	 ui�0�i, which was fitted to a

stretched exponential form CR�t� / exp
��t=�����. For
� � 0:6 the relaxation is of Arrhenius form with a constant
value � � 0:95 for T > Tm � 0:46, but � was fit sepa-
rately for every temperature T < Tm, where it decreases
with temperature. The relaxation times were fitted to a
Vogel-Fulcher law �� � �0 exp
DT0=�T � T0��, which in-
volves fitting the three free parameters �0 � 0:61, D �
7:4, and T0 � 0:099 (in addition to �). We repeated the
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simulations of this model using Monte Carlo methods in
N-P-T ensemble [7], finding results in agreement with the
molecular dynamics simulations of Ref. [2] in the same
ensemble.

To construct the statistical mechanics of this system, we
recognize that the potential energy between any pair of
particles depends on their spin orientations. In Fig. 1, we
present the three potentials between two particles, depend-
ing on the orientation of their spins relative to the inter-
particle vector distance: Lowest in energy (continuous blue
line) is the case for which both have a favored spin ori-
entation, and the middle (dashed green line) [respectively,
high (dotted red line)] is the potential when one (respec-
tively, none) of the spins is in a favored orientation. One
sees that the minima of these potentials occur with signifi-
cant gaps in their energies, allowing us to now measure the
average energy of pairs of particles as a function of
temperature. These averages fall in three distinct ranges,
such that the range of variation of each energy is much
smaller than the gaps between the energies; see the inset in
Fig. 1. This allows us to proceed to define quasispecies. We
denote the three effective energies below as 2Eb, 2Eg, and
2Er, respectively. Note that the spin orientations involved
in each such mean energy can fluctuate within a
temperature-dependent range of angles. For the tempera-
ture range of interest, the range of angles is in a sector of
about 60�, but, as this range of angles determines the
degeneracies that enter the statistical mechanics below,
we need to reconsider it carefully as explained in the
following. Next, consider an n star, which by definition is
a given particle decorated by the n interparticle vector

distances (edges) to its n neighbors; see, for example,
Fig. 2. Each such edge is colored according to the spin
orientations. We denote by i, j, and k the number of red,
green, and blue edges, respectively, such that n � i� j�
k. It turns out that, in the temperature range of interest (0<
T < 0:5), in an overwhelming majority of n stars (more
than 98%), the central particle has a spin orientation that is
favorable with respect to two of its edges (this is, of course,
the maximal value, which is favored by energy consider-
ations). Therefore, we take a priori j� k � 2, neglecting
the very small number of instances where this does not
hold. The energy of such an n star (referred to as a
quasiparticle) is computed as

 Eijk � iEr � jEg � kEb; (4)

where k  2. Note that, since the energies on the right-
hand side of Eq. (4) depend on temperature, so does the
energy of the quasiparticles. Notwithstanding, in the inter-
esting temperature range the temperature dependence is
weak; we take the energies of the quasiparticles as
T-independent (we used half the energy of a particle pair
Er � �0:2187, Eg � �0:5645, Eb � �1:5105). The de-
generacy gijk of the energy level (number of quasiparticles
with the same energy) is

 gijk �
2
k

� �
i� j� k� 2

i

� �
2j�2k�24i�k�2: (5)

Since the central particle always has a spin in favorable
orientation to two edges, each of these two edges must be
blue or green; the first factorial is the number of possible
choices of blue edges, one way if there are two (or none) of
them and two ways if there is one of them. Once these two
edges are determined, there remain i� j� k� 2 edges to
choose the i red from, giving rise to the second factorial.
This completes the degeneracy due to color. Next, we
count the number of spin orientations. There are 2� k

FIG. 1 (color online). Potential curves for particle pairs with
two spins, one spin, or no spin in the favored position (continu-
ous blue line, dashed green line, or dotted red line, respectively).
Inset: The measured energies of particle pairs, falling in three
distinct ranges with gaps between them, allowing us to define the
quasiparticles. The peak in each colored curve corresponds to the
minimum in the main figure.

12

FIG. 2 (color online). An example of an n star with n � 5, i �
2, j � 2, and k � 1. The central particle has a spin with the
favored orientation with respect to edges 1 and 2. Thus, these
edges can be either blue or green, and this central spin cannot be
favored with respect to any other edge. In the interesting range of
temperatures, we observe 36 n stars with 4  i� j� k  6.
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green edges due to the central particle and i red edges,
giving us i� k� 2 unfavorable spin orientations and j�
2k� 2 favorable ones. The number of ways to orient the
unfavorable spins is 4i�k�2, and the number of ways to
orient the favorable spins is 2j�2k�2. The number 4 stems
from the fact that the two favored orientations occupy an
angular sector of 2� 60�, leaving us with 4 sectors of 60�

for the unfavorable orientations. The fact that the central
particle can emanate at most two favored edges means that
we have a constraint

P
ijk�j� 2k�cijk  4, where cijk is the

mol fraction of quasiparticles having i, j, and k edges of the
right color. In practice, as mentioned above, the inequality
can be swapped with an equality

 

X
ijk

�j� 2k�cijk � 4: (6)

To satisfy this constraint exactly, we need to consider the
temperature dependence of the spin-fluctuation sectors,
since when these change, so do the assignments of �ijk�.
In Fig. 3, we show the left-hand side of Eq. (6) for two fixed
spin-fluctuation sectors [upper, red squares, 69�; lower,
green diamonds, 50�; middle, blue circles, variable sector
of width w � �68:5T � 41:2��]. In all cases, the sum was
measured via Monte Carlo simulations in the range 0:05<
T < 0:5. The quality of the constraint using the variable
spin-fluctuation sector is obvious. The decrease at high
temperatures is due to the increased fluctuations in the
spin orientations and in the energies of the quasiparticles,
inducing changes in the degeneracies and in the �ijk�
assignments. We thus use this temperature-dependent
width of the spin fluctuations to assign the quasiparticle
index �ijk� in all our simulations.

Now write the partition function of the system:

 Z�T; ��T�� �
X
ijk

gijke
��Eijke���j�2k�: (7)

The Lagrange multiplier � is introduced to ensure that the

constraint (6) is satisfied. In terms of the partition function,
the mol fraction of quasiparticles is

 cijk �
gijke

��Eijke���j�2k�

Z�T; ��T��
: (8)

Substituting Eq. (8) in Eq. (6), we compute ��T� for each
temperature and then compute the mol fraction cijk. For
presentation and comparison with numerical simulations, it
is advantageous to bunch groups of cijk together. One
bunching is in the three groups obtained with k � 0; 1; 2.
In Fig. 4, we present a comparison of the theory to the
simulation for the mol fractions of quasiparticles with k �
0; 1; 2. We note that the agreement is excellent down to
T � 0:17, where the simulation gets jammed. This obser-
vation is in agreement with Ref. [2], where it was estimated
that the glass transition temperature is about 0.15 on the
basis of the ‘‘divergence’’ of relaxation times. We note that
the statistical mechanics predicts the precise spin statistics
of the glassy jammed state, since the mol fractions freeze at
a ‘‘fictive temperature’’ T � 0:17 that can be read directly
from Fig. 4. We do not need to measure relaxation times to
see where the system falls out of equilibrium; it is obvious
directly from Fig. 4.

In addition, the statistical mechanics predicts two ‘‘tran-
sitions’’ when the mol fractions of quasispecies with k � 0
and then with k � 1 become small. The glass transition
(jamming) occurs visibly when the mol fraction ck�0

becomes small. We read a second transition when ck�1

becomes exponentially small. This implies that the ground
state consists solely of k � 2 quasiparticles, in perfect
agreement with the existence of the a crystalline ground
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FIG. 3 (color online). Direct numerical simulation of the con-
straint (6).

FIG. 4 (color online). Comparison of the direct numerical
simulations to the theoretical prediction. Shown are the mol
fractions ck, with k � 0 (dashed-dotted red line), k � 1 (dashed
green line), and k � 2 (continuous blue line). One sees the point
of departure of the direct numerical simulations from equilib-
rium (the point of jamming) which is estimated to be about T �
0:17. Inset: The same concentrations on a logarithmic scale.
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state with antiferromagnetic order. Thus, the offered sta-
tistical mechanics explains very well the phenomenology
of this system. Note that both of these transitions refer to
finite systems, where sufficiently small concentrations
mean effectively zero concentration.

The greatest challenge for the statistical mechanics is
whether it can also predict the measured relaxation times.
Jamming is caused by the rapid reduction in the mol
fraction of some spin configurations, leading to a loss of
ergodicity. To see this, consider the quasiparticles with k �
0. These are the highest in energy, and, accordingly, their
mol fraction goes to zero first when the temperature cools
down. Using then the mol fraction ck�0 in comparison with
the area per particle a � A=N, we form a length scale 	
according to

 	�T� �
����������������������
a=ck�0�T�

q
: (9)

When ck�0 ! 0, the length scale 	! 1, defining regions
of increasing size that are jammed and therefore contrib-
uting to an increasing relaxation time. Spin relaxations are
dominated by correlated stringy (one-dimensional) chains,
and we estimate the number of quasiparticles involved N�

as N��T� � 	�T�. The relaxation time is determined by the
free energy barrier, and, denoting by 
 the chemical
potential per quasiparticle, we write [5,8]

 �� � �0 exp
�
N��T�

T

�
� �0 exp

�



���
a
p

T
����������������
ck�0�T�

p
�
: (10)

Note that this prediction differs essentially from the Adam-

Gibbs formula [9] in the sense that it does not predict a
divergent �� at any finite temperature but rather an enor-
mous increase in �� when ck�0 ! 0 exponentially fast.
The statistical mechanics does not allow ck�0 � 0. Of
course, in any finite system ‘‘exponentially small’’ mol
fractions can be actually zero, and the relaxation time
can be effectively infinite. The theory does not recognize,
however, a sharp transition in the thermodynamic limit.

The comparison of the prediction (10) to the measured
values of the relaxation times (measured as explained from
the rotational autocorrelation functions [2]) is shown in
Fig. 5. We note both the excellent agreement and the fact
that �0 is of the order of unity, as expected in the limit T !
1, where the relaxation time should be the particle vibra-
tion time. We again draw the attention of the reader to
Fig. 3 in Ref. [5], where a fit to the relaxation time is
achieved, using similar ideas. In the problem there, the
relaxation was configurational rather than via an internal
variable as here, and typically relaxation events spanned
two-dimensional correlated domains, making the free en-
ergy barrier proportional to 	2. The equal usefulness of the
ideas used, with the only change being the identification of
the quasispecies, their degeneracy and the constraints on
the statistical mechanics give us hope that the approach is
quite general and can be applied to glass-forming systems
of a very different nature. Whether or not such a computer-
assisted statistical mechanics can be applied to three-
dimensional glass formers is a question that must await
future research.
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