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Based on the complex Ginzburg-Landau equation (CGLE), a new mapping model of oscillatory media
is proposed. The present dynamics is fully determined by an effective phase field renormalized by
amplitude. The model exhibits phase turbulence, amplitude turbulence, and a frozen state reported in the
CGLE. In addition, we find a state in which the phase and amplitude have spiral structures with opposite
rotational directions. This state is found to be observed also in the CGLE. Thus, one concludes that the
behaviors observed in the CGLE can be described by only the phase dynamics appropriately constructed.
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Various spatiotemporal patterns are observed in non-
equilibrium systems, such as fluid systems, chemical reac-
tion, and nonlinear optics [1]. Such dynamics in spatially
extended systems are often described by nonlinear partial
differential equations. The complex Ginzburg-Landau
equation (CGLE) is one of the most-studied nonlinear par-
tial differential equations. The CGLE is a universal equa-
tion which describes slow spatiotemporal variation near a
supercritical Hopf bifurcation [2] and exhibits a rich vari-
ety of dynamical behaviors [3–5] in spite of its simple
form

 

_A�r; t� � A� �1� ic2�jAj2A�D�1� ic1�r
2A; (1)

where c1, c2, and D�>0� are real parameters and A is the
complex order parameter. Almost 20 years ago, for effi-
ciency of numerical simulations, some partial differential
equations were approximated by mapping models [6,7].
Mapping models of the CGLE have been also obtained and
investigated as an approximation [3,8–13].

In this Letter, we consider a mapping model of the
CGLE in order to extract the essential natures of the
CGLE. We use the mapping model constructed by the
method proposed in Refs. [12,13], which is similar to those
in Refs. [3,8–11]. There are two steps to obtain mapping
models: (i) splitting the time evolution of the CGLE into
two parts and (ii) recombining them. One of the divided
two parts is a local part which consists of the first two terms
in the right-hand side of Eq. (1), and the other is a nonlocal
part which is the spatial coupling term in Eq. (1). The time
evolution of each part can be solved analytically as shown
below.

The time evolution of the local part is described by the
Stuart-Landau equation _A � A� �1� ic2�jAj

2A, which is
obtained by omitting the spatially coupling term in Eq. (1).
Integrating the Stuart-Landau equation over time width �
and setting  �t� � eic2tA�t�, we obtain

  �t� �� � F�� �t��; (2)

where F�� � �  f�1� e�2��j j2 � e�2�g��1�ic2�=2. The
time evolution of the nonlocal part is described by the
complex diffusion equation _ � D�1� ic1�r

2 , which
is obtained by omitting the local parts in the right-hand
side of Eq. (1). Integrating the equation over time width �,
we have

  �r; t� �� � LD� �r; t�; (3)

where LD� is the linear operator defined by LD�f�r� �R
KD��r� r0�f�r0�dr0. Here KD��r� � f4�D��1�

ic1�g
�d=2e�jrj

2=4D��1�ic1�, and d is the spatial dimensional-
ity. Recombining the divided time evolutions, we obtain
the mapping model

  n�1�r� � LD�F�� n�r��: (4)

This equation is a model based on the CGLE with a control
parameter � and coincides with Eq. (1) in the limit �! 0.
Therefore, Eq. (4) for small � is expected to show approxi-
mately the dynamics in the CGLE. Actually, the spatio-
temporal dynamics in the CGLE have been investigated by
using mapping models similar to Eq. (4) as an approxima-
tion [3,8–11].

In this Letter, we take the opposite limit �! 1 by
keeping D� � 1 fixed. In this limit, the local map F�� �
reduces to

 F� � � F1� � �
�
 j j��1�ic2� � � 0�;
0 � � 0�;

(5)

which maps an arbitrary state  onto either a state on the
limit cycle (j j � 1) or the unstable fixed point ( � 0) of
the Stuart-Landau equation. Thus, the limit �! 1 re-
moves the relaxation process to the limit cycle. By setting
L � LD��1 � e�1�ic1�r

2
, the above procedure leads to the

complex Ginzburg-Landau map (CGLM)

  n�1�r� � LF� n�r��: (6)

We will show that the CGLM (6) exhibits the spatiotem-
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poral behaviors reported in the CGLE and discuss the
essence of the CGLE dynamics.

It should be noted that the limit �! 1 allows us to
renormalize the amplitude component into the phase vari-
able as follows. Introducing the renormalized phase vari-
able �n � arg n � c2 logj nj for  n � 0, we define the
phase field with the phase singular point as zn�r� �
F� n�r��, that is, zn�r� � ei�n�r� for  n�r� � 0 and zn�r� �
0 for  n�r� � 0. Here zn � 0 represents the phase singular
point, and �n describes an isochron of the Stuart-Landau
equation. Equation (6) can be written as n�1�r� � Lzn�r�,
which indicates that the time evolution of  n is determined
by zn. In addition, we obtain the mapping system of the
phase field with the phase singular point as

 zn�1�r� � F�Lzn�r��; (7)

which is the phase description of the CGLM. Because there
is no approximation through the derivation of Eq. (7) from
Eq. (6), this phase description is valid even when the
CGLM exhibits a state in which the amplitude plays an
important role in dynamics. In the case that there is no
phase singular point, Eq. (7) can be reduced to the phase
map

 ei�n�1�r� � Lei�n�r�=jLei�n�r�j1�ic2 : (8)

First, we carry out the linear stability analysis of plane
wave solutions of the CGLM

  ̂ n�r� � e�jqj
2

exp�ifq � r� �c1 � c2�jqj
2ng	; (9)

with a constant vector q. Because the solutions have
no phase singular point ( ̂n � 0), we use the phase
map (8), in which the plane wave solutions can be written
in the form �̂n�r� � q � r� �c1 � c2�jqj

2n� const. By
substituting �n � �̂n � �n into Eq. (8), the linearized
equation for �n is obtained as �n�1�r� � <��1�
ic2�e

�1�ic1��r
2�2iq�r��n�r�	. Therefore, the Fourier trans-

form ~�n�k� of �n obeys

 

~� n�1�k� � e�q�k� ~�n�k�; (10)

where �q�k���jkj
2�2ic1q �k� lnf��1� ic2�=2	 


eic1jkj
2�2q�k���1� ic2�=2	e�ic1jkj

2�2q�kg. If <f�q�k�g> 0,
the plane wave with the wave number q is linearly unstable
against the perturbation with a wave number k. Expansion
of �q�k� to fourth order in jkj leads to

 �q�k� � �iVgjkj �D2jkj
2 � i�gjkj

3 �D4jkj
4; (11)

with Vg � 2�c1 � c2�qk, D2 � 1� c1c2 � 2�1� c2
2�q

2
k,

�g �
2
3 �1� c

2
2��3c1 � 4c2q

2
k�qk, and D4 �

1
6 �1� c

2
2�


f3c2
1 � 24c1c2q

2
k � 8�1� 3c2

2�q
4
kg. Here qk � q � k=jkj.

In the case that D2 < 0, that is, the wave number q satisfies
jqj2 > q2

E � �1� c1c2�=2�1� c2
2�, the plane wave solu-

tion is linearly unstable against long-wavelength perturba-
tions. This instability is identical to the Eckhaus instability
observed in the CGLE [4]. In particular, the spatially

uniform state loses its stability at 1� c1c2 � 0, which is
the same as the Benjamin-Feir-Newell criterion in the
CGLE, and the Benjamin-Feir instability occurs for 1�
c1c2 < 0. Then D2 < 0 is satisfied for arbitrary wave num-
bers, and thus all plane wave solutions are linearly un-
stable. It is expected that the absolute instability of the
plane wave solutions [14] can be also investigated.

Next, we show numerical results of the CGLM in a 2D
system with the linear size L � 128�. We have numeri-
cally confirmed that Eq. (7) exhibits the same behavior as
that in Eq. (6). Numerical cost to solve Eq. (6) is almost the
same as that for Eq. (7), and zn can be obtained from  n but
not vice versa. Therefore, we use Eq. (6) instead of Eq. (7)
for the numerical simulations.

Slightly below the critical point 1� c1c2 � 0 of the
Benjamin-Feir instability, the phase turbulence arises
from initial conditions  n � 1. As shown in Fig. 1(a),
the amplitude j nj has the cellular structure as well as in
the CGLE [15]. The phases arg n and �n have the spatial
structure similar to that of the amplitude, and its spatial
mean slowly increases.

Now we prove that the phase turbulence observed in the
CGLM coincides with that in the CGLE. Because this
turbulence has no phase singular point, we can use the
phase map (8) in this proof. As shown in the linear stability
analysis given above, only the long-wavelength modes are
destabilized slightly below the critical point 1� c1c2 � 0.
Therefore, the spatial scale of the variation of the phase
variable �n is expected to be large near the critical point.
By letting the spatial scale be of order ��1=2 with a small-
ness parameter �, the term r2ei�n is estimated to be of
order �, and the linear operator L is expanded as L�

e�1�ic1�r
2
� 1� �1� ic1�r

2� 1
2 �1� ic1�

2r2r2�O��3�.
Substituting this expansion into Eq. (8) and setting �n�1 �
�n ! @�n=@n, we obtain the Kuramoto-Sivashinsky (KS)
equation:
 

@�n
@n
� �1� c1c2�r

2�n � �c2 � c1��r�n�
2

�
1

2
�c2

1 � 2c1c2 � 1�r2r2�n: (12)

It should be noted that the coefficients of r2�n and �r�n�2

in Eq. (12) coincide with those in the KS equation derived

FIG. 1. Snapshots of j nj of (a) phase turbulence for �c1; c2� �
��1; 1:2� and (b) amplitude turbulence for �c1; c2� � ��1; 0:6�.
In (b), there are 544 defects.
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from the CGLE by the phase reduction method, while the
coefficients of r2r2�n derived from the CGLM and the
CGLE are different [2,16]. This deviation may be carried
by the difference of the definitions of the ‘‘phases,’’ �n for
the CGLM and arg for the CGLE. Note that the deviation
vanishes at the critical point 1� c1c2 � 0 and that, in the
limit 1� c1c2 ! 0, the amplitude fluctuation vanishes
(j nj ! 1), and thus �n approaches arg n. These facts
imply that the phase turbulences in the CGLM and the
CGLE are quantitatively the same near the critical point.
One may find that the coefficient of r2r2�n is different
from D4 in Eq. (11) for q � 0. This is because the growth
rate of Eq. (10), ~�n�1 �

~�n � �e
�q � 1�~�n, is not �q�k�

but [e�q�k� � 1], whose long-wavelength expansion for
q � 0 gives the coefficients of Eq. (12).

In addition to the phase turbulence, we observe the
amplitude turbulence for �c1; c2� � ��1; 0:6� [Fig. 1(b)],
which is characterized by the exponential decay of the
spatial correlation [Fig. 2(a)]. In this state, a lot of phase
singular points (defects) exist over the whole space. The
temporal evolution of the number N of defects [Fig. 2(b)]
shows that pairs of defects are created and annihilate in
time. We find that the correlation length �c defined in
Fig. 2(a) is approximately equal to the mean distance dm
between a defect and its nearest neighbor: �c � dm � 9:0.
Because the defect turbulence observed in the CGLE also
has these characteristics [17], the amplitude turbulence in
the CGLM is expected to be identical to the defect turbu-
lence in the CGLE.

For �c1; c2� � ��1:0; 0:4�, after the transient amplitude
turbulent state, spiral waves tend to appear and eventually
cover the whole space. The amplitude shows no temporal
evolution, as shown in Fig. 3(a), while the phase exhibits
the spiral waves, which rotate at a constant speed. This
state is called either the frozen state (FS) or the vortex glass
state [9]. For �c1; c2� � ��3:0; 0:4�, although spiral waves
also occur, the amplitude is not frozen, and both the phase
and the amplitude have spiral structures [Fig. 3(b)]. Here-
after we call this state the amplitude spiral state (ASS).

Figure 4 depicts details of the spatial structures near the
spiral core in the FS and the ASS. There are at least three

qualitative differences between the FS and the ASS. First,
the FS has an ordered spiral structure in the phase
[Fig. 4(a)] and a rotationally symmetric hole structure in
the amplitude [Fig. 4(b)]. However, the ASS has a distorted
spiral in the phase [Fig. 4(c)] and an ordered spiral in the
amplitude [Fig. 4(d)]. In the ASS case, the spiral structures
in the amplitude and the phase have opposite rotational
directions. Second, the position of the spiral core is mo-
tionless in the FS, while the core position rotates in the
ASS. For example, the core in Fig. 4(d) rotates counter-
clockwise. Third, far from the spiral core, the FS exhibits
the plane wave described by Eq. (9), while the ASS ex-
hibits the plane wave with amplitude modulations. As
shown below, the latter seems identical to the modulated
amplitude wave (MAW) observed in the 1D CGLE, which
is described as  �x; t� � a�x� vt�ei��x�!t� [18,19]. In the
1D CGLM, we found a solution [Fig. 5(a)] satisfying the
relation  n�x� � a�x� vn�ei��x�!n�, which was demon-
strated by the fact that  n�x�e�i��x�!n� exhibits the trans-
lational motion with keeping its profile [Fig. 5(b)]. The
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FIG. 2. Statistics of amplitude turbulence for �c1; c2� �
��1; 0:6�. (a) Spatial correlation <h n�r� 

�
n�0�i=hj n�0�j2i,

where h�i denotes time averaging. The correlation length �c is
defined in the same way as that in Ref. [17]. (b) Temporal
evolution of the number N of defects in the whole space. The
dashed line indicates the average number hNi � 572:9.

FIG. 3. Snapshots of j nj of (a) the FS for �c1; c2� � ��1; 0:4�
and (b) the ASS for �c1; c2� � ��3; 0:4�.

FIG. 4 (color online). Snapshots of (a),(b) the FS for �c1; c2� �
��2; 0:4� in a subsystem of the linear size l � 12:5� and
(c),(d) the ASS for �c1; c2� � ��3; 0:5� in a subsystem of the
linear size l � 31:25�. (a),(c) Phase field arg n;
(b),(d) amplitude field j nj with isophase curves (red: < n �
0; green: = n � 0).
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amplitude pattern of this solution [Fig. 5(c)] is quite similar
to those of the plane wave of the ASS [Fig. 5(d)] and the
MAW in the 1D CGLE [Fig. 5(e)]. It should be noted that,
depending on initial conditions, both the FS and the ASS
can be observed (and, hence, both are stable) for parameter
values in a certain range in the �c1; c2� space.

We found the ASS in the present Letter. In addition, we
numerically obtained the ASS in the 2D CGLE (not the
CGLM) from specific initial conditions [20]. Hence, the
ASS is a stable state of the CGLE, and this fact implies that
it is possible to observe the ASS in other oscillatory media.
It was found that the long-wavelength modulated spiral can
be observed in the CGLE with heterogeneity [21] and the
Belousov-Zhabotinsky reaction [22] and that the CGLE
with a constant term exhibits a state in which both the
amplitude and the phase have spiral structures [23]. To
investigate the relevance of these states with the ASS is a
future problem.

The main difference between the CGLE and the CGLM
is the presence or absence of the relaxation process to the
limit-cycle attractor (j j � 1). In spite of the difference,
the results presented in this Letter reveal that the CGLM
can well reproduce the dynamics observed in the CGLE.
Therefore, we believe that the relaxation process does not
play an important role in the CGLE and that the CGLE can
be well described by only the phase dynamics appropri-
ately constructed. These facts may give new insight into
the understanding of oscillatory media.
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FIG. 5. Temporal evolutions of (a) <� n�x�	 and
(b) <� n�x�e�i��x�!n�	 (� � 0:125, ! � 0:2504) in the 1D
CGLM. (c)–(e) Snapshots of the amplitude patterns. The pa-
rameter values of both the CGLM and the CGLE are �c1; c2� �
��3; 0:5�, and D � 1:0 for the CGLE.
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