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Recent experimental and theoretical studies on the magnetization dynamics driven by an electric
current have uncovered a number of unprecedented rich dynamic phenomena. We predict an intrinsic
chaotic dynamics that has not been previously anticipated. We explicitly show that the transition to chaotic
dynamics occurs through a series of period doubling bifurcations. In chaotic regime, two dramatically
different power spectra, one with a well-defined peak and the other with a broadly distributed noise, are
identified and explained.
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Among many well-studied nonlinear oscillators driven
by external forces, only a handful of oscillators have
technological applications [1,2]. The recently discovered
current-driven magnetization oscillators with tunable mi-
crowave frequencies in spin valves are very desirable for
magnetic storage devices and for telecommunications. Up
until now, theoretical and experimental studies of the os-
cillator have been carried out only for the simplest cases
where the dynamics of the oscillator is either in a self-
sustained steady-state precessional motion (limit cycle)
[3–8] or in synchronization with other oscillator(s) [9–
13]. Since the equation that governs the oscillator is highly
nonlinear, it would be fundamentally interesting to map out
the full dynamics for experimentally relevant parameters.
In particular, a thorough study of chaotic dynamics will
elucidate how the current-driven oscillator responds to an
external perturbation.

Previous study of the current-driven magnetization
chaos or noise was based on the micromagnetic simulation
where the magnetization is not uniform due to strong
magnetostatic interaction at the edge of the sample
[14,15]. These chaotic dynamics highly depend on the
shape and size of the sample, and thus it is not an intrinsic
property of the current-driven oscillator. Here we consider
a single-domain current-driven spin-valve oscillator so that
the undesired complication of the spatial variation of the
magnetization is eliminated. The intrinsic dynamic prop-
erty of the spin-valve oscillator is investigated in the pres-
ence of an external periodic perturbation, for example, an
ac current. By utilizing the Poincaré map [16], we have
found the route to chaos to be via period doubling bifurca-
tions. Positive Lyapunov exponents [16] and Sharkovskii
ordering [17] are observed as the evidence of chaos.
Furthermore, we show two dramatically different power
spectra in chaotic regions, one with a well-defined peak
and the other with broadly distributed noise.

The modeled spin valve consists of a pinned layer whose
magnetization is fixed along the positive x axis and a

single-domain free layer whose magnetization vector m
is the subject of our calculation. The free layer experiences
an effective field Heff made of an external field, an anisot-
ropy, and a demagnetization field perpendicular to the layer
(z axis). We choose the direction of the magnetic field
along the in-plane easy axis [18]. The dynamics of the
magnetization on the free layer is determined by the modi-
fied Landau-Lifshitz-Gilbert equation [3]
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(1)

where aj is the amplitude of the spin torque which has the
unit of the magnetic field (Oe). Since the magnitude of the
magnetization jmj � 1 is a constant, there are only two
independent variables, thus, chaotic dynamics are excluded
for a constant aj. In fact, the solutions of Eq. (1) have
already been obtained [5,19]. The time-dependent solution
is a limit cycle which can be analytically determined via
the construction of a Melnikov integral (MI) [5]. It has
been found that the stable limit cycle with a well-defined
frequency (which we call the natural frequency !0) ex-
ists only for the current density larger than a critical cur-
rent density. Two distinct limit cycles have been identified:
an out-of-plane orbit and a nearly in-plane orbit around
m � ex.

To explicitly reveal the dynamics of the above spin-
valve oscillator under an external perturbation, we now
consider a time-dependent current which adds an addi-
tional term in Eq. (1), aac cos�!t��m� �m� ex�. The
simplest dynamic phase would be the synchronization,
i.e., the spin-valve oscillator is forced to oscillate in phase
with the external frequency ! as long as !0 is sufficiently
close to !. Indeed, the recent experiment [9] and theory
[12,13] have clearly demonstrated the synchronization.
The much richer dynamics, however, would be chaotic
dynamics [20] shown below.
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An analytical prediction of chaotic dynamics can be
made using a MI along the separatrix orbit. The simple
zeros of the MI indicate the occurrence of chaotic dynam-
ics [20]. In Ref. [20], the MI was carried out for a fixed
magnetic field. Here we map out the phase diagram in a
parameter space of both dc current and magnetic field.
Implementing the MI approach, we obtain a boundary
loop which encloses all the possible simple zeros in the
parameter space. In Fig. 1, the phase diagram is plotted.
Two solid lines are a portion of the complete boundary
loop; if we extend the parameter space to a much larger
range, the two lines will meet to form a closed area. Since
there exists an arbitrary phase in calculating the MI, the
exact solutions are not available. Therefore, a more rigor-
ous numerical test is required to identify the true chaos
bounded by the boundary lines. We show below that only
the dark region in Fig. 1 is chaos.

Numerically, chaos is often indicated by the positive
Lyapunov exponents. The Lyapunov exponent measures
the exponential increase (or decrease) of an initial distance
from two close trajectories,

 �i � lim
t!1

1

t
ln
k�mi

tk

k�mi
0k

where �i is the ith Lyapunov exponent and k�mi
tk is the

distance between the trajectories of the ith orthogonal axis
at time t. When �i > 0, the distance between two arbi-
trarily close points will increase exponentially along the i
axis at a large t [21]. For a bounded dynamic system, any
positive Lyapunov exponent indicates chaos. We numeri-
cally computed the Lyapunov exponents and Fig. 2(a)
shows an example of the Lyapunov spectra, where the
largest exponent is shown in red (or gray) solid line and

the other two are in dashed and dotted lines. When aj is
smaller than the critical value 230.03 Oe, all three
Lyapunov exponents are nonpositive and thus the dynam-
ics are nonchaotic, see Fig. 2(b). When aj becomes larger
than 230.03 Oe, the largest Lyapunov exponents become
positive, and thus chaos appears [Fig. 2(c)]. By sweeping
the parameters of the dc current and the external field, we
have mapped out the parameters that give arise at least one
positive Lyapunov exponent, shown as the dark area in
Fig. 1.

To understand how chaos develops, we applied the
Poincaré map [16,17,21] to this system. In spin-valve
oscillators, it is difficult to choose a simple Poincaré sec-
tion because a simple section can hardly include both out-
of-plane and in-plane orbits simultaneously. To avoid this
difficulty, we record the trajectory points every time a local
minimum of mx is reached. If we define the time intervals
between two successive minima as a period, this is essen-
tially a Poincaré period map except that the period is not a
constant.

By using the minimum mx map, we are able to see the
development of chaotic dynamics when one varies the
parameters. For limit cycles where the parameters are
within the nonchaotic white regions shown in Fig. 1, the
magnetization follows a unique trajectory and the map
point is just one unique point. When the parameters, e.g.,
the currents, are close to the boundaries between the white
and dark regions of Fig. 1, two map points are seen; this is
identified as the period doubling bifurcation. In this case,
the magnetization orbit will return to the original orbit after
two periods. If we choose the current even closer to the
boundaries, a period-four orbit and, in general, a period-2n

orbit, appear. When n! 1, the magnetization dynamics
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FIG. 1 (color online). Chaotic-nonchaotic phase diagram. Two
lines are the boundary of chaos determined by the Melnikov
integral. Chaos is possible only within the region bounded by
these two lines. The dark region represents a positive value of the
largest Lyapunov exponent, i.e., chaos. The parameters are
chosen similar to a permalloy film: damping constant � �
0:02, anisotropy constant HK � 0, demagnetization field
4�Ms � 8400 Oe, and � � 1:7� 10�7 Oe�1 s�1. The ampli-
tude and the frequency of the ac current are aac � 20 Oe and
! � 15 GHz.
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FIG. 2 (color online). (a) Lyapunov spectra for 226 Oe< aj <
233 Oe; (b) the regular nonchaotic trajectory for aj � 227:5 Oe;
(c) chaotic trajectory for aj � 232:5 Oe. The magnetic field is
200 Oe. All parameters are the same as in Fig. 1.
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become chaotic, i.e., the appearance of the dark regions in
Fig. 1. In Fig. 3, we have shown an example of the
bifurcation diagram where the transition from the synchro-
nization to the bifurcation and to chaos is clearly demon-
strated. Period-five and period-six chaos windows are
observed between 252 to 253 Oe in the cascade.
According to Sharkovskii ordering theorem, these obser-
vations imply the existence of chaos [17].

The period doubling bifurcation cascade shown in Fig. 3
is in fact similar to those in other nonlinear systems [16].
To see if our bifurcation structure belongs to the same
universal quadratic class, we evaluate the Feigenbaum
ratio [22] which is defined as

 �i �
ai � ai�1

ai�1 � ai�2
;

where ai is the value of the parameter at the ith bifurcation
point. In Table I, We list an example of measurement of
Feigenbaum ratios for our system. There is a second
Feigenbaum ratio that denotes the rescaling ratio of the
bifurcation forks. For example, from first two bifurcation
in Fig. 3, we measured j�j � j�Mx1=�Mx2j � 2:68.
Analytically, the Feigenbaum ratios are approaching to
the universal constants 4.6692. . . for � and 2.5029. . . for
j�j [22], for a quadratic nonlinear map [23]. We find that
the measured ratios agree with the universal Feigenbaum
numbers exceedingly well. This indicates that our system
indeed belongs to a quadratic nonlinear class.

By summing all Lyapunov components, we have verified
that the volume contraction (�v � �1 � �2 � �3) is al-
ways negative even though the Lyapunov exponent can
be positive; the negative volume contraction indicates the
dissipative nature of the spin-valve oscillator [16,21].

A highly interesting feature is the two distinct magneti-
zation trajectories during the transition to chaos. In the first

case, the bifurcation occurs only at the out-of-plane orbits
shown in Fig. 4(a). Although the bifurcation on this single
orbit also leads to chaos because the largest calculated
Lyapunov exponent is positive, the power spectrum dis-
plays a well-defined peak. The peak position corresponds
to the inverse of the average time for the magnetization to
complete one loop (since the loop never closes, we define a
one-loop when the trajectory returns to the point nearest to
the starting point of the loop). Thus, the presence of the
narrow peak indicates a quasiperiodic motion of the mag-
netization in chaotic dynamics. It would be erroneous if
one automatically assumes the dynamics is synchroniza-
tion when the experimental power spectrum is highly
peaked. Synchronization refers to the phase locking be-
tween the external and natural frequencies, but the positive
Lyapunov exponent excludes the possibility of the phase
locking. The second chaotic motion involves both out-of-
plane and in-plane orbits, as seen in Fig. 4(c). In this case,
the power spectra display typical noise, i.e., broadly dis-
tributed spectra. The magnetization jumps between out-of-
plane and in-plane orbits are completely random; it is an
intrinsic stochastic process driven by a deterministic exter-
nal perturbation. This stochastic jumping leads to a much
stronger noise in the power spectra. On the other hand, it is
necessary that trajectories are within the vicinity of the
separatrix of two different orbits so that the stochastic
magnetization jump can take place under small perturba-
tions. Since the separatrix has an infinite period, the tra-
jectory close to it must have a nearly zero frequency as
seen in Fig. 4(d).

The synchronizationlike chaotic power spectra imply
that quasiperiodicity can be observed in chaos if the tra-
jectory is not near the separatrix. It is the stochastic jump of
the trajectory in the vicinity of the separatrix that reduces
the periodicity. The reduction of the periodicity due to
stochastic jumps could also occur when the thermal fluc-
tuations exist because the thermal fluctuations are stochas-
tic, known as a Wiener process. In general, there exists a
bifurcation gap [24] where the thermal fluctuations limit
the observation of 2n orbits in the bifurcation diagram to a
finite number n < n0. The stronger the fluctuations are, the
smaller n0 is. Consequently, the thermal fluctuations make

TABLE I. Feigenbaum ratio measurement. The second column
is derived from Fig. 3; ai is a critical value at the ith bifurcation
point.

i ai ai � ai�1 �i

1 257.2500 �1:9300 4.289
2 255.3200 �0:4500 4.356
3 254.8700 �0:1033 4.472
4 254.7667 �0:0231 4.529
5 254.7436 �0:0051 4.636
6 254.7385 �0:0011
7 254.7374

FIG. 3. Period doubling bifurcation cascade. The dashed lines
indicate the critical values of the dc current where the bifurcation
occurs. All parameters are the same as in Fig. 2.
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the Lyapunov spectra smoother in Fig. 2 and chaos win-
dows invisible in Fig. 3. We emphasize that although the
thermal fluctuations lead to noise in the power spectra and
the possible random jumps between two orbits, it is not
associated with the bifurcation and thus there are no uni-
versal Feigenbaum numbers. Experimentally, one can dis-
tinguish chaotic dynamics generated by the deterministic
perturbation (ac current) and by the thermal fluctuations.
For example, when the parameter, e.g., dc current in our
study, is varied, the current-driven power spectrum should
evolve from nonchaotic dynamics to chaos and back to
nonchaos.

In conclusion, by using both analytical and numerical
approaches, we have shown the route to chaos and that the
oscillator belongs to the class of dissipative quadratic non-
linear systems. Our findings demonstrate that the current-
driven magnetization dynamics is much richer than previ-
ously studied steady-state motion and synchronization.
The magnetization oscillator whose dynamics can be mea-
sured by experiments provides a model system to verify
chaos theories in a general nonlinear system.

This work was supported by DOE(DE-FG02-
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FIG. 4 (color online). Trajectories and their corresponding
Mz-component power spectra of two types of chaos. Upper
panels: aj � 262:5 Oe; the largest Lyapunov exponent is 0.86.
Lower panels: aj � 261:0 Oe; the largest Lyapunov exponent is
1.56. All parameters are the same as in Fig. 2.
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