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We investigate the spatial dynamics of optical necklace beams in Kerr media. For powers corresponding
to less than the critical power for self-focusing per bead, we experimentally confirm the confinement of
these necklace beams as proposed in [Phys. Rev. Lett. 81, 4851 (1998)]. At higher powers, we observe a
transition from collective necklace behavior to one in which the beads of the necklace collapse
independently. We observe that, below the transition power, the perturbed necklace still behaves in a
collective manner with coupling between individual beads but that, at higher powers, it undergoes a
similar transition to a decoupled state of the necklace.
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The nonlinear Schrédinger equation (NLSE) is used to
describe phenomena in many areas of physics including
optics [1], plasmas [2], and Bose-Einstein condensates [3].
The 1-D NLSE admits stable exact solutions known as
solitons, which in optical systems can be observed in the
temporal domain in fibers or in the spatial domain in slab
waveguides [4]. In these systems, the nonlinear focusing
exactly balances the diffraction in the spatial domain or
dispersion in the time domain. For the 2-D NLSE, which
describes an optical beam propagating through a bulk Kerr
medium, there are no such stable solitonic solutions. For
powers above a certain critical power P, the beam will
self-focus and undergo collapse until higher-order pro-
cesses such as plasma generation halt the collapse [5],
while beams below the P will diffract. Spatial 2-D sol-
itons do exist in photorefractive media where the nonline-
arity is saturable [4]. The collapse dynamics of beams with
different input profiles yields many interesting results and
has been studied for Gaussian [6], astigmatic Gaussian
[7,8], super-Gaussian [9], and optical vortex [10] input
profiles. In each case, the beams are unstable and even-
tually collapse towards one or more individual Townes
profiles [11], which each contain a power equal to P,.

Necklace beams were first conceived [12] as a spatial
profile that would be relatively stable to collapse and could
maintain its shape over long propagation distances and thus
overcome the spatial instability associated with the 2-D
NLSE. Such a beam was first envisioned by taking a string
of one-dimensional antiphase solitons and wrapping them
into a ring. Each bead approximates a one-dimensional
soliton in the radial direction, and by employing the
well-known out-of-phase repulsion exhibited by all soli-
tons [4], each bead repels its neighbors in the azimuthal
direction. Numerical simulations showed that the individ-
ual beads of the necklace remained confined over many
diffraction lengths in contrast to the diffraction of a single
bead [12—14]. Many other types of rings of beams, similar
to necklace beams, have recently been suggested including
vector solitons [15], soliton clusters [16], necklacelike
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solitons in photonic lattices [17], two-color soliton clus-
ters, which exist in media with cubic and quadratic non-
linearities [18,19], and also necklacelike beams in media
with cubic and quintic nonlinearities [20]. Nearly all of
these studies have been theoretical, and there has been little
experimental work verifying such beams. Preliminary ex-
periments made qualitative observations of the confine-
ment of necklacelike beams in a bulk nonlinear medium
[21], but the confinement, collapse dynamics, and stability
of the beams were not investigated. Rotschild et al. [22]
have also recently observed necklace beams in highly
nonlocal nonlinear media.

In this Letter, we present the first experimental inves-
tigation of the collapse dynamics and stability of necklace
beams in a Kerr medium. We measure the confinement
properties and examine the stability and collapse of the
necklace beams at high powers. At intermediate power
ranges, when the whole beam power is less than the prod-
uct of the number of beads and P,,, the beads are coupled
together and, if significantly perturbed, will coalesce into
one beam and collapse. At higher powers, when each bead
has more than one P of a Gaussian, the beads collapse
independently.

In the original theoretical work [12] on necklace beams,
the input profile to the nonlinear medium is sech[(r —
L)/w]cos(w@), where r is the transverse radial coordi-
nate, L is the width of the ring of beads, w is the width
of each bead, and the diffraction length is 27nw?/A.
Since such a profile cannot be readily produced experi-
mentally, a natural choice for realizing the beams are the
well-known Laguerre-Gaussian (LG) TEM,; modes,
which have a necklace shape. With this input, we compare
the diffraction of the necklace beam against the diffraction
length of the corresponding LG beam, rather than the
diffraction length of a single bead, since we believe this
provides a more practical measure of confinement of the
necklace beam. For example, even in the linear regime, a
ring of Gaussians will diffract more slowly than an isolated
Gaussian beam.
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To model the dynamics of the necklace beams, we use
the (2 + 1)-D NLSE, which can be expressed in dimen-
sionless form as

Lar

2.0 —
Lnlll/fl =0, )

i¢g+%v2l¢+

where (v, u, {) = A(x, y, 2)/ Ay, A is the amplitude of the
envelope of the electric field, A, is the peak input ampli-
tude, { = z/Lys, p = x/ro, v = y/rg, V3 is the transverse
Laplacian, Ly = kr% /2, Ly is the diffraction length, L., is
the nonlinear length, ry is the characteristic radius of the
input beam, k = 27ny/A is the wave number, A is the
vacuum wavelength, n, is the linear index of refraction,
and n, is the nonlinear index coefficient. The last term of
the left-hand side gives rise to self-focusing arising from
the intensity-dependent refractive index n = ng + n,l.
The critical power for self-focusing depends on the input
beam profile. In this Letter, P, denotes the critical power
for self-focusing of an isolated Gaussian profile [5].

The experimental setup is shown in Fig. 1. A 90-fs, 800-
nm pulse from a Ti:sapphire amplifier is sent through a
spatial filter and then passes through a phase plate. The
phase plate is a fused-silica substrate in which alternating
azimuthal sections are produced using reactive-ion etch-
ing. The beam is then passed through a second spatial filter
to eliminate the higher-order modes, which leaves the
lowest-order LG beam. The beam is then recollimated
and sent through different lengths of BK7 glass. In order
to probe different ranges of power and avoid plasma for-
mation due to the high intensities, we took data with
multiple input diameters and two different lengths of glass.
We record the input profile by removing the glass and
imaging it onto a 12-bit CCD camera. We then replace
the glass and image the output face. In order to observe the
collapse dynamics of the beams, we increase the power
until just below the threshold of supercontinuum genera-
tion, which is a signature of collapse [23].
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FIG. 1 (color online). Experimental setup for studying propa-
gation of necklace beams. A phase plate with azimuthally
alternating phase sections is used to produce the initial necklace
profile.

For a 90-fs pulse traveling through such long (30 and
58 cm) lengths of BK7, dispersive effects are not negli-
gible. As the pulse propagates, it broadens, and the peak
power decreases. Our simulations do not include the tem-
poral dynamics and thus cannot take into account this
change in the peak power. Nevertheless, when comparing
the numerical predictions to the experiments, we find that
the spatial dynamics and collapse distances are in excellent
agreement up to a scaling factor in the input power.

Initially, we investigate the spatial confinement and for-
mation of the necklace beam from the input LG beam.
Figure 2 shows the experimental pictures of the confine-
ment of the necklace beam compared with numerical
simulations. Figure 2(a) shows the input profile after the
second spatial filter. Figure 2(b) shows the beam at the
output of 58 cm of glass at low powers (linear diffraction).
As the power is increased, the beads of the beam change
their shape and draw towards the center, forming a
necklace beam as shown in Fig. 2(c). Each individual
lobe of the LG forms a circular bead, and the confinement
of the total necklace improves as the power is increased.
Figure 2(c) is just below the supercontinuum threshold.

The corresponding numerical results are presented in
Figs. 2(d)-2(f). The formation of a necklace beam reduces
the effects of diffraction as compared to the linear regime,
but we find that the profile does not remain truly confined
even at distances as short as 4Ly for a necklace beam with
8 beads. This result is a clarification of the original theo-
retical claim that necklace beams remained confined over
tens of diffraction lengths [12]. By comparing against the
diffraction length of a LG beam, which closely approxi-
mates a necklace beam, rather than the diffraction length of
a single Gaussian, which only approximates an individual
lobe, we present an accurate measure of the confinement
possible for a necklace beam in the nonlinear regime. The
necklace beams are not true solitons since diffraction

FIG. 2 (color online). Experimentally measured (a)—(c) and
simulations (d)—(f) for necklace beams in glass. (a) Input
Laguerre-Gaussian, (b) (E = 1.0 uJ) after 58 cm of glass,
() (E=17.7 pl) after 58 cm of glass. (d) Input Laguerre-
Gaussian, (e) low power (i.e., linear diffraction), { = 4L,
(f) P =8P, at { = 4L;.
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FIG. 3 (color online). Experimentally measured necklace pro-
file at high input pulse energy (E = 12.2 ulJ) (left) at the input
and after 30 cm of propagation through glass (right).

effects are still present, albeit at a highly reduced level
[12]. However, we find that the necklace beam is unusually
stable to azimuthal modulational instability in comparison
with other beams in the self-focusing regime such as vortex
and ring-shaped profiles, which are unstable and break
apart into increasing numbers of filaments as the power
is increased; the necklace maintains the same number of
beads. Our numerical simulations also show that, even at
high powers and with up to 20% amplitude and phase
noise, the necklace beams do not break apart or filament
as it propagates.

We attempted to dramatically increase the power and
observed a corresponding increase in the confinement. We
expanded the input profile to avoid supercontinuum gen-
eration and used the 30-cm piece of glass. Figure 3 shows
the input LG beam at more than twice the energy as in
Fig. 2. At higher powers, the beads do not form a necklace
beam, but they each collapse to Townes profiles similarly
to the behavior of an isolated Gaussian [6]. From the
numerical simulations, we find that this transition occurs
when the input profile has more than one P per bead.
Further increases in the power do not change the dynamics
but simply hasten the collapse.

Numerical simulations predict that the confinement of
the necklace beam improves as the number of beads in-
creases. We attempted to study necklace beams with 16
and 32 beads. However, as the power for a necklace beam
is approximately one P per bead, in order to avoid high
intensities and higher-order effects in the glass, the size of
the input profile must be increased. Beams large enough to
avoid such high intensities did not undergo sufficient dif-
fraction in our longest sample length (58 cm) to observe
any significant confinement. In other physical situations, it
might be possible to achieve better confinement.

In order to investigate the stability of necklace beams for
the case of severe perturbation, we blocked one lobe of the
LG at the input face of the glass. Figure 4 shows the
dynamics of a necklace with one blocked bead for an
energy of 4.9 uJ. Figure 4(a) is the input, and Fig. 4(b)
shows the beam diffracting linearly through 58 cm of glass.
Figure 4(c) shows the profile of the beam just before
supercontinuum generation, which shows that the initially
blocked bead becomes much more intense than the other
beads. Identical behavior is observed in the simulations

d

FIG. 4 (color online). Experimentally measured (a)—(c) and
simulations (d)—(f) of necklace beam propagation in which the
beam is perturbed by removing one of the beads. (a) Input,
(b) (E = 0.7 uJ) after 58 cm of glass, (c) (E = 4.9 ul) after
58 cm of glass. (d) Input, (e) linear diffraction for { = 2.8Lg,
(f) P=6P, at { = 2.8Lyg;.

[Figs. 4(d)—4(f)] for powers at 6P.. We see that, in the
regime of linear diffraction, the originally blocked beam
reforms with slightly higher intensity than its neighbors. In
the nonlinear regime, each bead of the necklace is coupled
to its neighbors as it propagates, and one bead eventually
collapses on its own. The simulations also show that, even
though the total power of the beam is 6P, in the original
beam, only one of the beads collapses.

At higher powers, we observe a transition from this
collective behavior. Figure 5 shows the predicted and
observed dynamics of a necklace with one blocked bead
for E = 8.4 uJ. Figure 5(a) is the input, and Fig. 5(b)
shows the profile of the beam just before supercontinuum
occurs. Each of the beams collapses independently of its
neighbors into a Townes profile, which is confirmed in the

90

FIG. 5 (color online). Experimentally measured (a),(b) and
simulations (c),(d) for a perturbed necklace beam at high power.
(a) Input, (b) (E = 8.4 uJ) after 30 cm of glass, (c) input,
(d) P =8P, at { = 0.2L-.
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simulations [Figs. 5(c) and 5(d)] for powers at 8P. The
abrupt change in the dynamics is also evident in the sharp
drop in the distance to collapse from 2.8Ly; in Fig. 4(f) to
0.2L4 in Fig. 5(d) when the power is increased from 6 to
8P,,.

Further examination of the numerical simulations shows
that the transition for the LG beam with one lobe blocked is
rather steep as the power is increased. At 6P, this beam
collapses into one bead, and above 7P, each lobe collapses
independently into 7 collapse points. The number of col-
lapse points increases linearly with the power in between
these two extremes. The beads of the beams are coupled
and exchange energy during the propagation in a compli-
cated manner. As soon as any bead has more than one P,
it will collapse independent of its neighbors.

This results in unique collapse dynamics at high powers
when compared to other ring-shaped beams. In the pres-
ence of noise, vortex [10] and super-Gaussian beams [9]
break apart into individual Townes profiles that increase in
number as the power increases. Figure 6 shows the collapse
profile for a necklace beam with 10P,, [Fig. 6(b)], 15P,
[Fig. 6(c)], and 20P,, [Fig. 6(d)], which all collapse with
the same initial necklace shape. The necklace-shaped col-
lapse pattern is also maintained even with amplitude and
phase noise as high as 50%. Thus, the use of LG beams
offers a technique for sending arbitrarily large powers in a
single beam through a Kerr medium and avoiding self-
focusing collapse by shaping the beam into a LG beam
with more lobes than there are P, in the beam.

In conclusion, we have experimentally detailed the con-
finement of a necklace beam when compared with its linear
counterpart LG beam. We have observed appreciable con-
finement over a few diffraction lengths as compared with
the diffraction length of the input LG. Increasing the power
resulted in a transition of dynamics from collective
necklace behavior to individual collapse of the beads. We
also observed that a perturbed necklace beam experiences
collective dynamics and collapses to a single bead at
intermediate power ranges. At powers above one P per
bead, we observe that the beads decouple from their neigh-
bors, and each bead catastrophically collapses towards the
Townes profile for both the nonperturbed and the perturbed
necklace profile. For beams consisting of a combination of
out-of-phase Gaussian beams, we expect similar distinct
regions of nonlinear behavior.

It is interesting to note that a similar transition between
collective and independent dynamics has been observed in
semiconductor resonators [24,25]. An initial hexagonal

FIG. 6 (color online). Numerical pre-
dictions of the collapsing profile for a
Laguerre-Gaussian input (a) with 25%
amplitude and phase noise for three dif-
ferent powers. (b) P = 10P, at { =
O.25Ldf, (C) P = 15Pcr at g = O.ISLdf,
(d) P =20P at { = 0.125Ly.

field pattern was formed at low power, exhibiting coher-
ence between the individual lobes which diminished as the
nonlinearity was increased. The similarity in the observed
transition may indicate a possible general decoupling phe-
nomenon which could be observable in other systems with
a Kerr-type nonlinearity.
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