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2Institut für Theoretische Physik, Universität Zürich, CH-8057 Zürich, Switzerland
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We compute the next-to-next-to-leading-order (NNLO) QCD corrections to the thrust distribution in
electron-positron annihilation. The corrections turn out to be sizable, enhancing the previously known
next-to-leading-order prediction by about 15%. Inclusion of the NNLO corrections significantly reduces
the theoretical renormalization scale uncertainty on the prediction of the thrust distribution.

DOI: 10.1103/PhysRevLett.99.132002 PACS numbers: 12.38.Bx, 13.66.Bc, 13.66.Jn, 13.87.�a

Three-jet production cross sections and related event
shape distributions in e�e� annihilation processes are
classical hadronic observables which can be measured
very accurately and provide an ideal proving ground for
testing our understanding of strong interactions. The de-
viation from simple two-jet configurations is proportional
to the strong coupling constant, so that by comparing the
measured three-jet rate and related event shapes with the
theoretical predictions, one can determine the strong cou-
pling constant �s.

The theoretical prediction is made within perturbative
QCD, expanded to a finite order in the coupling constant.
This truncation of the perturbative series induces a theo-
retical uncertainty from omitting higher-order terms. It can
be quantified by the renormalization scale dependence of
the prediction, which is vanishing for an all-order predic-
tion. The residual dependence on variations of the renor-
malization scale is therefore an estimate of the theoretical
error.

So far the three-jet rate and related event shapes have
been calculated [1,2] up to the next-to-leading order
(NLO), improved by a resummation of leading and sub-
leading infrared logarithms [3,4] and by the inclusion of
power corrections [5].

QCD studies of event shape observables at LEP [6] are
based around the use of NLO parton-level event generator
programs [7]. It turns out that the current error on �s from
these observables [8] is dominated by the theoretical un-
certainty. Clearly, to improve the determination of �s, the
calculation of the next-to-next-to-leading-order (NNLO)
corrections to these observables becomes mandatory. We
present here the first NNLO calculation of the thrust dis-
tribution, which is an event shape related to three-jet
production.

The thrust variable for a hadronic final state in e�e�

annihilation is defined as [9]

 T � max
~n

�P
i j ~pi � ~njP
i j ~pij

�
;

where pi denotes the three-momentum of particle i, with

the sum running over all particles. The unit vector ~n is
varied to find the thrust direction ~nT which maximizes the
expression in parentheses on the right-hand side.

It can be seen that a two-particle final state has fixed T �
1; consequently, the thrust distribution receives its first
nontrivial contribution from three-particle final states,
which, at order �s, correspond to three-parton final states.
Therefore, both theoretically and experimentally, the thrust
distribution is closely related to three-jet production.

Three-jet production at tree-level is induced by the
decay of a virtual photon (or other neutral gauge boson)
into a quark-antiquark-gluon final state. At higher orders,
this process receives corrections from extra real or virtual
particles. The individual partonic channels that contribute
through to NNLO are shown in Table I. All of the tree-level
and loop amplitudes associated with these channels are
known in the literature [10–13].

For a given partonic final state, thrust is computed
according to the same definition as in the experiment,
which is applied to partons instead of hadrons. At leading
order, all three final state partons must be well separated
from each other, to allow T to differ from the trivial two-
parton limit. At NLO, up to four partons can be present in
the final state, two of which can be clustered together,
whereas at NNLO, the final state can consist of up to five
partons, such that as many as three partons can be clustered

TABLE I. Partonic contributions to the thrust distribution in
perturbative QCD.

LO �� ! q �qg tree-level
NLO �� ! q �qg one-loop

�� ! q �qgg tree-level
�� ! q �qq �q tree-level

NNLO �� ! q �qg two-loop
�� ! q �qgg one-loop
�� ! q �qq �q one-loop
�� ! q �qq �qg tree-level
�� ! q �qggg tree-level
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together. The more partons in the final state, the better one
expects the matching between theory and experiment to be.

The two-loop �� ! q �qg matrix elements were derived
in [10] by reducing all relevant Feynman integrals to a
small set of master integrals using integration by parts [14]
and Lorentz invariance [15] identities, solved with the
Laporta algorithm [16]. The master integrals [17] were
computed from their differential equations [15] and ex-
pressed analytically in terms of one- and two-dimensional
harmonic polylogarithms [18].

The one-loop four-parton matrix elements relevant here
[12] were originally derived in the context of NLO correc-
tions to four-jet production and related event shapes
[19,20]. One of these four-jet parton-level event generator
programs [20] is the starting point for our calculation, since
it already contains all relevant four-parton and five-parton
matrix elements.

The four-parton and five-parton contributions to three-
jet-like final states at NNLO contain infrared real radiation
singularities, which have to be extracted and combined
with the infrared singularities [21] present in the virtual
three-parton and four-parton contributions to yield a finite
result. In our case, this is accomplished by introducing
subtraction functions, which account for the infrared real
radiation singularities, and are sufficiently simple to be
integrated analytically. Schematically, this subtraction
reads
 

d�NNLO �
Z
d�5

�d�RNNLO � d�
S
NNLO�

�
Z
d�4

�d�V;1NNLO � d�
VS;1
NNLO� �

Z
d�5

d�SNNLO

�
Z
d�4

d�VS;1NNLO �
Z
d�3

d�V;2NNLO;

where d�SNNLO denotes the real radiation subtraction term
coinciding with the five-parton tree-level cross section
d�RNNLO in all singular limits [22]. Likewise, d�VS;1NNLO is
the one-loop virtual subtraction term coinciding with the
one-loop four-parton cross section d�V;1NNLO in all singular
limits [23]. Finally, the two-loop correction to the three-
parton cross section is denoted by d�V;2NNLO. With these,
each line in the above equation is individually infrared
finite, and can be integrated numerically.

Systematic methods to derive and integrate subtraction
terms were available in the literature only to NLO [24,25],
with extension to NNLO in special cases [26]. In the
context of this project, we fully developed an NNLO
subtraction formalism [27], based on the antenna subtrac-
tion method originally proposed at NLO [20,25]. The basic
idea of the antenna subtraction approach is to construct the
subtraction terms from antenna functions. Each antenna
function encapsulates all singular limits due to the emis-
sion of one or two unresolved partons between two color-
connected hard partons. This construction exploits the
universal factorization of phase space and squared matrix

elements in all unresolved limits. The individual antenna
functions are obtained by normalizing three-parton and
four-parton tree-level matrix elements and three-parton
one-loop matrix elements to the corresponding two-parton
tree-level matrix elements. Three different types of antenna
functions are required, corresponding to the different pairs
of hard partons forming the antenna: quark-antiquark,
quark-gluon, and gluon-gluon antenna functions. All these
can be derived systematically from matrix elements [28]
for physical processes.

The factorization of the final state phase space into
antenna phase space and hard phase space requires a map-
ping of the antenna momenta onto reduced hard momenta.
We use the mapping derived in [29] for the three-parton
and four-parton antenna functions. To extract the infrared
poles of the subtraction terms, the antenna functions must
be integrated analytically over the appropriate antenna
phase spaces, which is done by reduction [30] to known
phase space master integrals [31].

We tested the proper implementation of the subtraction
by generating trajectories of phase space points approach-
ing a given single or double unresolved limit. Along these
trajectories, we observe that the antenna subtraction terms
converge towards the physical matrix elements, and that
the cancellations among individual contributions to the
subtraction terms take place as expected. Moreover, we
checked the correctness of the subtraction by introducing a
lower cut (slicing parameter) on the phase space variables,
and observing that our results are independent of this cut
(provided it is chosen small enough). This behavior indi-
cates that the subtraction terms ensure that the contribution
of potentially singular regions of the final state phase space
does not contribute to the numerical integrals, but is ac-
counted for analytically. A detailed description of the
calculation will be given elsewhere [32].

The resulting numerical programme, EERAD3, yields the
full kinematical information on a given multiparton final
state. It can thus be used to compute any infrared-safe
observable related to three-particle final states at O��3

s�.
As a first application, we present results for the NNLO
corrections to the thrust distribution here. Our results are
complete up to the pure-singlet corrections (which come
from �� ! ggg and related final states, and appear first at
NNLO). In the context of O��3

s� corrections to four-jet
final states [19] and in the two-loop three-parton matrix
elements [10], these were shown to yield only a marginal
numerical contribution to the full coefficient at this order.
They are therefore ignored here, and will be presented
elsewhere for completeness. Without them, the theoretical
expression for the thrust distribution through to NNLO can
be expressed by three dimensionless coefficients (A, B, C),
which depend only on T and not on the scale of the process
or on coupling constants and quark charges. These are
obtained as coefficients of the thrust distribution normal-
ised to the tree-level cross section �0 for e�e� ! q �q,
evaluated for �s � �s�Q�, where Q is the center-of-mass
energy of the process
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The experimentally measured thrust distribution

 

1

�had

d�
dT

can then be expressed in terms of A, B, C by expanding
�had around�0. If the renormalization scale of�s is chosen
to be � � Q, additional terms proportional to powers of
ln��2=Q2� appear, which are again expressed in terms of
A, B, C and of the coefficients of the QCD �-function.

In the numerical evaluation, we useMZ � 91:1876 GeV
and �s�MZ� � 0:1189 [8]. Figure 1 displays the perturba-
tive expression for the thrust distribution at LO, NLO, and
NNLO, evaluated for � � Q � MZ. It can be seen that
inclusion of the NNLO corrections enhances the thrust
distribution by around (15–20)% over the range 0:03<
�1� T�< 0:33. Outside this range, one does not expect the
perturbative fixed-order prediction to yield reliable results.
For �1� T�> 0:33, the leading-order prediction vanishes
due to kinematical constraints from having only three
partons in the final state; at NLO, �1� T�> 0:42 is kine-
matically forbidden, and the spherical limit T ! 0:5 is
reached only for infinitely many partons in the final state.
For �1� T� ! 0, the convergence of the perturbative se-
ries is spoiled by powers of logarithms ln�1� T� appearing
in higher perturbative orders, thus necessitating an all-
order resummation of these logarithmic terms [3,4], and
a matching of fixed-order and resummed predictions [33].

To estimate the theoretical error inherent to the pertur-
bative prediction, we vary the renormalization scale in the
interval � 2 �MZ=2; 2MZ	. The relative uncertainty at
each order

 � �
max������	 �min������	

2��� � MZ�

is displayed in Fig. 2. It can be clearly seen how the
inclusion of higher-order corrections stabilizes the predic-
tion, and the uncertainty � is reduced by about 30%
between NLO and NNLO. The increase in uncertainty
above 1� T � 0:33 is due to the vanishing of the

leading-order contribution; the perturbative fixed-order
description and its theoretical error become unreliable
beyond this point.

In Fig. 3, we compare the theoretical NNLO prediction
for the thrust distribution to experimental data from the
ALEPH experiment [34]. Similar measurements were car-
ried out by all LEP experiments [35]. The NNLO correc-
tion is positive and for the same value of �s, yields a
prediction that is larger than at NLO. This indicates the
need for an improved determination of�s from event shape
data, which takes the newly computed NNLO corrections
into account. Work on this is ongoing.

To obtain a reliable description of the thrust distribution
over the full kinematic range, it would be desired to match
the NNLO results presented here to the resummed expres-
sions in the two-jet limit, and to include hadronization
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FIG. 1. Thrust distribution at Q � MZ.
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FIG. 2. Relative scale-uncertainty on thrust distribution at dif-
ferent orders in perturbation theory.

10
-3

10
-2

10
-1

1

10

Q = 206 GeV

10
-3

10
-2

10
-1

1

10

0 0.1 0.2 0.3 0.4 0.5

NNLO

NLO

LO

Q = 91 GeV

αs (MZ) = 0.1189

1-T

1/
σ ha

d 
dσ

/d
 T

FIG. 3. NNLO thrust distribution compared to experimental
data from ALEPH [34].
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corrections. Both these improvements are beyond the
scope of this letter, and will be addressed in later work.

In this Letter, we presented the first NNLO calculation
of event shapes related to three-jet production in e�e�

annihilation. We developed a numerical program which
can compute any infrared-safe observable through to
O��3

s�, which we applied here to determine the NNLO
corrections to the thrust distribution. These corrections are
moderate, indicating the convergence of the perturbative
expansion. Their inclusion results in a considerable reduc-
tion of the theoretical error on the thrust distribution. Our
results will allow a significantly improved determination of
the strong coupling constant from jet observables.
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