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A general method to determine covariant Lyapunov vectors in both discrete- and continuous-time
dynamical systems is introduced. This allows us to address fundamental questions such as the degree of
hyperbolicity, which can be quantified in terms of the transversality of these intrinsic vectors. For spatially
extended systems, the covariant Lyapunov vectors have localization properties and spatial Fourier spectra
qualitatively different from those composing the orthonormalized basis obtained in the standard procedure
used to calculate the Lyapunov exponents.
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Measuring Lyapunov exponents (LEs) is a central issue
in the investigation of chaotic dynamical systems because
they are intrinsic observables that allow us to quantify a
number of different physical properties such as sensitivity
to initial conditions, local entropy production and attractor
dimension [1]. Moreover, in the context of spatiotemporal
chaos, the very existence of a well-defined Lyapunov spec-
trum in the thermodynamic limit is a proof of the exten-
sivity of chaos [2], and it has been speculated that the small
exponents contain information on the ‘‘hydrodynamic’’
modes of the dynamics (e.g., see [3] and references
therein).

In this latter perspective, a growing interest has been
devoted not only to the LEs but also to some corresponding
vectors, with the motivation that they could contribute to
identifying both the real-space structure of collective
modes [4] and the regions characterized by stronger or
weaker instabilities [5]. However, the only available ap-
proach so far is based on the vectors yielded by the stan-
dard procedure used to calculate the LEs [6]. This allows
us to identify the most expanding subspaces, but has the
drawback that these vectors—that we shall call Gram-
Schmidt vectors (GSV) after the procedure used—are,
by construction, orthogonal, even where stable and un-
stable manifolds are nearly tangent. Moreover, GSV are
not invariant under time reversal, and they are not cova-
riant; i.e., the GSV at a given phase-space point are not
mapped by the linearized dynamics into the GSV of the
forward images of this point.

While the existence, for invertible dynamics, of a
coordinate-independent, local decomposition of phase
space into covariant Lyapunov directions—the so-called
Oseledec splitting [1]—has been discussed by Ruelle long
ago [7], it received almost no attention in the literature,
because of the absence of algorithms to practically deter-
mine it. In this Letter, we propose an innovative approach
based on both forward and backward iterations of the
tangent dynamics, which allows determining a set of di-
rections at each point of phase space that are invariant

under time reversal and covariant with the dynamics. We
argue that, for any invertible dynamical system, the intrin-
sic tangent-space decomposition introduced by these co-
variant Lyapunov vectors (CLV) coincides with the
Oseledec splitting.

As a first important and general application of the CLV,
we show that they allow to quantify the degree of hyper-
bolicity of the dynamics. Considering that all physically
relevant dynamical systems are not hyperbolic (i.e., stable
and unstable manifolds are not everywhere transversal),
and that many of the available theoretical results have been
derived under the assumption of strict hyperbolicity (a
prominent example being the Gallavotti-Cohen fluctuation
theorem [8]), it is indeed highly desirable to develop a tool
to quantify deviations from hyperbolicity. At the moment,
this is doable only in very simple systems such as the
Hénon map or the Duffing oscillator, where homoclinic
tangencies can be detected by iterating separately the
tangent dynamics forward and backward in time. Since
CLV correspond to the local expanding or contracting
directions, we can straightforwardly evaluate their relative
transversality and, accordingly, quantify the degree of
hyperbolicity. Note that GSV, being mutually orthogonal,
are useless in this context. In a second important applica-
tion of CLV we show that, contrary to the weak localization
of GSV, they are generically localized in physical space,
providing an intrinsic, hierarchical decomposition of spa-
tiotemporal chaos. Furthermore, the knowledge of CLV
paves the way to analytical methods for determining the
LEs as ensemble- rather than time-averages.

Description of the algorithm.—We first summarize the
standard method for computing the LEs (we consider, for
simplicity, a N-dimensional discrete-time dynamical sys-
tem). Let xn�1 2RN denote the phase-space point at time
tn�1 and let fgjn�1g, j � 1; . . . ; N, be the N orthogonal
vectors obtained by applying the Gram-Schmidt orthogo-
nalization procedure to N tangent-space vectors (we shall
call this the �n� 1�th GS basis). Iterating the evolution
equations once, gjn�1 is transformed into �gjn � Jn�1gjn�1,
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where Jn is the Jacobian of the transformation evaluated at
time tn. The nth GS basis is thereby obtained by applying
the Gram-Schmidt transformation to the vectors �gjn. This
amounts to computing the so-called QR decomposition of
the matrix �Gn � � �G1

nj . . . j �gNn � whose columns are the
Jacobian-iterated vectors of the �n� 1�th GS basis: �Gn �
QnRn. The nth GS basis is given by the columns of the
orthogonal matrix Qn, while Rn is an upper-triangular
matrix whose off-diagonal nonzero elements are obtained
by projecting each vector �gjn onto the subspace spanned by
f �gkngwith k < j. It has been shown [9] that, by repeating the
above procedure up to a time tm for m much larger than n,
the GS basis converges to an orthogonal set of vectors fekmg,
k � 1; . . . ; N—the mth Gram-Schmidt vectors—which
solely depend on the phase-space point xm.

The LEs �1 � �2 � . . . � �N are then nothing but the
time-averaged values of the logarithms of the diagonal
elements of Rn. The method we propose also exploits the
usually disregarded information contained in the off-
diagonal elements. Let us now assume that a set of GSV
has been generated by iterating the generic initial condition
x0. Let ujm be a generic vector inside the subspace Sjm
spanned by fekmg, k � 1; . . . ; j, i.e., the first j GSV at time
tm. We now iterate this vector backward in time by invert-
ing the upper-triangular matrix Rm: if the cijm � �eim � ujm�
are the coefficients expressing it in terms of the GSV in xm,
one has cijm�1 �

P
k�Rm�

�1
ik c

kj
m , where �R�ij is a matrix

element of R. Since Rm is upper triangular, it is easy to
verify that ujn 2 Sjn at all times tn. This is due to the fact
that Sjn is a covariant subspace. Iterating ujm backward for a
sufficiently large number �m� n� of times, it eventually
aligns with the (backward) most expanding direction
within Sjn. This defines vjn, our intrinsic jth (forward)
expanding direction at the phase-space point xn. It is
straightforward to verify that vjn is covariant. Define the
matrix �Cm�ij � cijm; then one has Cm � RmCm�1. By
multiplying both sides by Qm and substituting �Gm for its
QR decomposition on the resulting right-hand side, one is
simply left with vjm � Jm�1vjm�1 for j � 1; . . . ; N. The
CLV are independent of where the backward evolution is
started along a given trajectory, provided that it is suffi-
ciently far in the future. Moreover, we have verified that
they are invariant under time reversal, i.e., that the direc-
tion of vjn is the same if we first move backward (applying
the standard orthonormalization procedure) and then for-
ward (according to the above outlined methodology).

Our CLV fvkmg thus constitute an intrinsic, covariant
basis defining expanding or contracting directions in phase
space [10]. The LEs are simply obtained from the CLV: the
ith exponent is the average of the growth rate of the ith
vector [11]. We have checked on simple invertible maps
that they coincide with the Oseledec splitting in xm. We
conjecture that this is the case for any invertible system.
Note that our CLV are also well defined for noninvertible

dynamics, since it is necessary and sufficient to follow
backward a trajectory previously generated forward in
time. In this respect they provide an extension of the
Oseledec splitting. Finally, and retrospectively, a prelimi-
nary evidence of the validity of our approach was given in
[12], where CLV were introduced to characterize time
periodic orbits in a 1D lattice of coupled maps. There, it
was found that the number of nodes (changes of sign) in a
CLV is directly connected to the position of the corre-
sponding LE within the Lyapunov spectrum.

We stress that the determination of the CLV can be very
efficient, making them a truly practical tool (as opposed,
say, to calculating directly the Oseledec splitting in the
case of invertible dynamics). Indeed, the major computa-
tional bottleneck is the memory required to store the
matrices Rn and the n-time GSV during the forward
integration. However, even this can be overcome by occa-
sionally storing configurations in real and tangent space
and regenerating the rest when needed.

Numerical analysis.—We measured the CLV in four
one-dimensional systems made of L nonlinear units
coupled to their nearest neighbors. Periodic boundary con-
ditions are used. The first is a chain of chaotic tent maps
(TM) on the unit interval,

 xin	1 � �1� 2"�f�xin� 	 "�f�x
i	1
n � 	 f�x

i�1
n �� (1)

with f�x� � ax if x 
 1=a and f�x� � a�x� 1�=�1� a�
otherwise. In the following we fix " � 0:2 and a � 2:3.

The second system is a chain of symplectic maps (SM),
 

pin	1 � pin 	��g�q
i	1
n � qin� � g�q

i
n � q

i�1
n ��;

qin	1 � qin 	 p
i
n	1;

(2)

where g�z� � sin�2�z�=�2��. This model was studied in
[13] to analyze the so-called ‘‘hydrodynamic Lyapunov
modes.’’ Equation (2) conserves total momentum P �P
ip
i, and is invariant under a translation of the q coordi-

nates. Therefore, the Lyapunov spectrum possesses two
null exponents. In the following we fix � � 0:6.

The last two models are second-order continuous-time
systems governed by �qi � F�qi	1 � qi� � F�qi � qi�1�.
For F�x� � sin�x�, we have the rotator model (RM), while
for F�x� � x	 x3, the system reduces to a Fermi-Pasta-
Ulam chain (FPU). These two widely studied Hamiltonian
systems provide a good testing ground to investigate the
connection between microscopic dynamics and statistical
mechanics. Besides the zero LE associated with a shift
along the trajectory, both models have three other null LEs
arising from energy and momentum conservation plus
translational invariance. Numerical simulations have been
performed at energy density E=L � 1 (for the RM) and
E=L � 10 (for FPU).

Hyperbolicity.—A dynamical system is said to be hyper-
bolic if its phase space has no homoclinic tangencies; i.e.,
the stable and unstable manifolds are everywhere transver-
sal to each other. In the mathematical literature, it is known
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that the Oseledec splitting is connected to hyperbolicity
[14], but the lack of practical algorithms to determine the
splitting makes such results of little use in physically
relevant contexts. Here, the knowledge of the CLV allows
testing hyperbolicity by determining the angle between
each pair (j, k) of expanding (j) and contracting (k) direc-
tions, �j;k

n � cos�1�jvjn � vknj�, where the absolute value is
taken because signs are irrelevant. As a first test, we have
computed the probability density function (PDF) P��� of
�1;2
n for two classic two-dimensional maps. Arbitrarily

small angles are found for the Hénon map, while the
distribution is bounded away from zero in the Lozi map
[Fig. 1(a)]. This is consistent with the known fact that only
the latter model is hyperbolic [15].

In spatially extended systems, given the multidimen-
sional character of the invariant manifolds, it is appropriate
to determine the minimum angle, �n � minf�j;k

n j�v
j
n 2

E	n ; vkn 2 E�n �g, where E�n are the expanding and contract-
ing invariant subbundles at time tn along the trajectory. The
histograms in Fig. 1(b) show that models (1) and (2) are
characterized by stronger hyperbolicity violations than the
Hamiltonian systems. Altogether, recalling that � refers to
the least transversal pair of directions, we are led to con-
clude that the dynamics of high-dimensional systems
should be closer to hyperbolic than that of low-dimensional
ones. This justifies the often-made assumption that spa-
tially extended systems are practically hyperbolic [8].

Localization properties in extended systems.—The spa-
tial structure of the vectors associated to the LEs is of
interest in many contexts. We now show that the GSV—
which have been used so far—and the CLV have qualita-
tively different localization properties. One usually consid-
ers the inverse participation ratio [16] Y2 � h

P
i��

j
i �

4i,
where h�i indicates an average over the trajectory and �ji
is a measure of the component of the jth vector at site i
(with the normalization

P
ij�

j
i j

2 � 1). In systems charac-
terized by a single local real variable (such as our TM), �ji
is taken to be the i-th component of the jth CLV or GSV,

while in the case of symplectic systems, where two com-
ponents are present [vj � ��qj; �pj�], it is natural to
choose ��ji �

2 � ��qji �
2 	 ��pji �

2. In order to investigate
the thermodynamic limit, it is necessary to determine
Y2�h; L� for fixed h � �j� 1

2�=L and increasing L. On
the one hand, localized vectors are characterized by a finite
inverse participation ratio, Y2�h; L� ! 1=‘, for L! 1,
where ‘ is a localization ‘‘length.’’ On the other hand, in
completely delocalized structures, Y2�h; L� � 1=L.

In Fig. 2 we show how Y2 typically scales with the chain
length L. The GSV show weak (de)localization: their
participation ratio exibits an h-dependent ‘‘dimension’’
��h�: Y2 � L���h�. One can show that this anomalous
behavior is entirely due to the Gram-Schmidt procedure,
and has nothing to do with the dynamics [17]. On the other
hand, CLV are localized objects. For TM, SM, and RM
dynamics we find good evidence of the scaling law
Y2�h; L� � 1=‘�h� 	 L�� with �  1

2 . This allows for a
reliable determination of ‘. For the FPU dynamics, we find
only slight curvature in the log-log plot of Fig. 2(c), signal-
ing that larger system sizes are probably needed to defi-
nitely enter the scaling regime. Moreover, for symplectic
dynamics the localization length ‘�h� diverges as h! 1

0 π/4 π/2Φ
0
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4
P(Φ)

0 π/4 π/2Φ
0

1

2 P(Φ)(a) (b)

FIG. 1 (color online). PDF of the angle between stable and
unstable manifold. (a) Hénon map xn	1 � 1� 1:4x2

n 	 0:3xn�1

(green light line), and Lozi map xn	1 � 1� 1:4jxnj 	 0:3xn�1

(black line, rescaled by a factor 10). (b) TM (L � 12, black
dotted line), SM (L � 10, green dashed line), RM (L � 32, red
dot-dashed line), and FPU (L � 32, blue full line).
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FIG. 2 (color online). Inverse participation ratio Y2 (see text)
of both CLV and GSV for different dynamics. (a)–(c) Log-log
plot of Y2 as a function of chain length L at fixed spectrum
position h. CLV results are shown in full symbols, while GSV by
empty symbols. In the log-log scale insets: inverse of the
localization length ‘ has been subtracted from Y2 to better
show the CVL behavior Y2�L� � 1=‘	 L�� (see text). The
dashed black lines mark a decay as � � 1

2 . (a) TM for h � 0:2
(black circles) and h � 0:4 (red squares). (b) SM for h � 0:2
(black circles) and h � 0:4 (red squares). (c) FPU (h � 0:2,
black circles) and RM (h � 0:2, red squares). (d) Lin-log plot of
the localization length ‘ of CLV vs h for TM (black circles), SM
(red squares), and RM (blue triangles).
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[Fig. 2(d)]. Assuming the continuity of the LE spectrum,
the divergence of ‘ is not surprising, since the conservation
laws imply that the Lyapunov vectors (both GSVand CLV)
corresponding to h � 1 (i.e., to null LEs) are completely
delocalized.

Fourier analysis.—Another way proposed to character-
ize the spatial structure of a Lyapunov vector is to look at
its power spectrum S�k� � j

P
m	me

imkj2, where 	m de-
notes the vector component associated with the space
coordinate qm at site m, i.e. 	m � �qm. For instance, this
was used in [13] to investigate the so-called hydrodynamic
modes (only GSV were considered there). Here, we have
focused on the vector corresponding to the smallest posi-
tive LE in our symplectic models, for which this LE goes
continuously to zero as the system size increases (note that
GSV and CLV coincide for the null exponents linked to
symmetries and conservation laws). We observe again a
clear qualitative difference between the spectra of GSVand
CLV (Fig. 3). In particular, the near-zero CLV exhibit an
intriguing low-frequency divergence of the 1=k type in all
three symplectic models we have analyzed. Thus, the
qualitative difference between GSV and CLV extends to
the h! 1 case.

Perspectives.—Now that the local directions of stable
and unstable manifolds are made available in generic
models, many questions can be addressed in a more accu-
rate way: Quantifying (non-)hyperbolicity in the context of
the (numerical) attempts to ‘‘verify’’ the fluctuation theo-
rem is one. Another set of questions relates to the spatial
structure of the dynamics in extended systems, such as the
quantification of local degree of chaos (amount of insta-
bility), a hierarchical decomposition of spatiotemporal
chaos, the search for true, intrinsic, collective (hydrody-

namic) modes, etc. A further field where the knowledge of
CLV can help to make progress is optimal forecast in
nonlinear models. Here the knowledge of the local trans-
versality of the invariant manifolds can indeed be com-
bined with the so-called bred vectors to use the information
on the past evolution to decrease the uncertainty along
unstable directions [18].
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FIG. 3 (color online). Trajectory averaged power spectrum (as
a function of the wave number k � j2�=L, j � 1; . . . ; L=2) of
the space components of CLV (a) and GSV (b) corresponding to
the smallest positive LE. Solid (black), dashed (red), and dot-
dashed lines (blue) refer to FPU, RM, and SM, respectively,
(L � 512). The dotted green line, corresponding to a 1=k be-
havior is plotted for comparison in panel (a).
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