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A non-Hermitian operator with a real spectrum and a complete set of eigenvectors may serve as the
Hamiltonian operator for a unitary quantum system provided that one makes an appropriate choice for
the defining the inner product of physical Hilbert state. We study the consequences of such a choice
for the representation of states in terms of projection operators and the geometry of the state space. This
allows for a careful treatment of the quantum Brachistochrone problem and shows that it is indeed
impossible to achieve faster unitary evolutions using PT -symmetric or other non-Hermitian
Hamiltonians than those given by Hermitian Hamiltonians.
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Since the publication of the pioneering work of Bender
and Boettcher [1] on non-Hermitian PT -symmetric
Hamiltonian operators, there have appeared numerous re-
search articles exploring the mathematical properties of
such operators and their possible physical applications.
Recently, it has been suggested that one can obtain arbi-
trarily fast quantum evolutions using a class of such
Hamiltonians [2]. If true, this will have drastic consequen-
ces in quantum computation, because, for example, it re-
moves the bound on the time-optimal unitary NOT opera-
tions [3] that is obtained within the framework of conven-
tional (Hermitian) quantum mechanics [4–7]. As pointed
out in [8], this seems to contradict the equivalence of the
quantum theory based on such non-Hermitian Hamilton-
ians and the Hermitian quantum mechanics [9,10]. In this
Letter, we offer a comprehensive treatment of this problem
that is based on a detailed study of the projective Hilbert
space PH phys of physical states. In particular, we obtain
the explicit form of the natural metric tensor on PH phys

and unravel the subtleties of the quantum Brachistochrone
problem for a general unitary quantum system that is
defined by a non-Hermitian Hamiltonian.

In general if a linear (possibly non-Hermitian) operator
has a complete set of eigenvectors and a real spectrum,
then it can serve as the Hamiltonian operator for a unitary
quantum system provided that the physical Hilbert space of
the system is defined using an appropriate inner product
[11–13]. This leads to a quantum theory that turns out to be
equivalent to the conventional quantum mechanics [9,10].
In other words, this theory, that we refer to as pseudo-
Hermitian quantum mechanics [14], is an alternative rep-
resentation of the conventional quantum mechanics. The
key ingredient of this representation is that the inner prod-
uct of the physical Hilbert space H phys is determined by
the Hamiltonian operator of the system. This has led to the
discovery of an intriguing structural similarity between
quantum mechanics and general theory of relativity [15].
It has also found applications in dealing with the Hilbert-
space problem in quantum cosmology [16], the old prob-

lem of constructing a unitary first-quantized quantum the-
ory of Klein-Gordon fields [17], bound state scattering
[18], and ghosts in certain quantum field theories [19].

In [2] the authors consider a class of two-level non-
Hermitian PT -symmetric Hamiltonians, define H phys

using the so-called CPT -inner product, and explore the
evolution of state vectors, i.e., elements of H phys. They
conclude that for a fixed initial and final state vectors,  I
and  F, one can obtain a Hamiltonian operator that evolves
 I into  F in an arbitrarily short time �. In this Letter we
reconsider this problem from the point of view that the true
dynamics of physical states occurs in the projective Hilbert
space PH phys, i.e., the state space of rays in the physical
Hilbert space; a proper treatment of the quantum
Brachistochrone problem requires a closer look at
PH phys and its geometry.

In Hermitian quantum mechanics, the Hilbert space H
is defined by the usual L2-inner product and the projective
Hilbert space PH is the projective space CPN�1, where
N�� 1� is the dimension of H . As pointed out in [7], the
lower bound on the duration � of the evolution is propor-
tional to the geodesic distance (between the initial and final
states) that is determined using the Fubini-Study metric
tensor on CPN�1, [20]. This suggests constructing the
analogous metric tensor on PH phys. A convenient method
of doing this is to represent the states (elements of
PH phys) by appropriate projection operators and use the
relevant inner product on the space of linear (trace-class)
operators acting in H phys to induce the desired metric
tensor on PH phys.

Let H be a Hilbert space defined by the conventional
L2-inner product h�j�i and H: H !H be a linear diago-
nalizable operator [21] with a real discrete spectrum. Then
there is a (positive-definite) inner product ��;�� that
renders H self-adjoint, i.e., � ;H����H ;�� [11].
This inner product is not unique but has the general form
� �; � �� h�j�	�i [23], where �	: H !H is a positive-
definite operator satisfying the pseudo-Hermiticity condi-
tion: Hy � �	H��1

	 , [13,24]. Here and throughout this
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Letter we define the adjoint Ay of every linear operator A
using the L2-inner product h�j�i through the condition
h jA�i � hAy j�i. We say that A is Hermitian if Ay �
A. We also introduce the �	-pseudo-adjoint A# of A that is
defined by A# :� ��1

	 A
y�	 [24]. This allows us to express

the �	-pseudo-Hermiticity of A, i.e., the condition Ay �
�	A�

�1
	 , as A# � A.

The physical Hilbert space H phys of the system whose
dynamics is determined by the Hamiltonian operator H is
obtained by taking the linear span of the eigenvectors of H
in H , endowing it with the inner product ��;�� for some
(metric operator) �	, and completing the resultant inner
product space. Clearly any linear operator A acting in
H phys is self-adjoint if and only if A# � A. These opera-
tors constitute the physical observables of the system [14],
the primary example being the Hamiltonian H.

The Hilbert space H phys and the HamiltonianH define a
pseudo-Hermitian quantum system that can be equiva-
lently described by the standard Hilbert space H and the
Hermitian Hamiltonian h :� �1=2

	 H���1=2�
	 , [9,10]. This

means that there is a one-to-one correspondence between
elements of H and H phys,  !  0 :� �1=2

	  , and the cor-

responding physical observables, A!A0 :��1=2
	 A���1=2�

	 ,
such that the expectation values coincide: � ;A �

� ; � �
h 0jA0 0i
h 0j 0i .

We begin our investigation of the state space in pseudo-
Hermitian quantum mechanics by identifying physical
states with orthogonal projection operators onto the corre-
sponding rays. Given a state vector  2H phys � f0g, the
corresponding orthogonal projection operator
� : H phys !H phys is a self-adjoint operator (�#

 �

� ) satisfying �2
 � � , �  �  , and � � � 0 if

�  ;� �� 0 [25]. These conditions imply

 � �
j ih j�	
h j�	 i

�
j ��  j
�  ; �

; (1)

where j �:� j i and � j :� h j�	 [26].
The inner product � �; � � of H phys induces the follow-

ing inner product on the space of (trace-class) operators
acting in H phys:

 �A;B� :� Tr�A#B� � Tr���1
	 A

y�	B�; (2)

where Tr�A� :�
P
n �  n; A n � and f ng is an arbitrary

orthonormal basis of H phys, [27]. Using the definition of

the inner product � �; � � and introducing  0n :� �1=2
	  n

which form an orthonormal basis in H , we have Tr�A� �P
nh nj�	A ni �

P
nh 

0
nj�

1=2
	 A���1=2�

	  0ni. Here the last
sum is the usual trace of �1=2

	 A���1=2�
	 , which, in view of

the cyclic identity for the trace, coincides with the trace of
A. This shows that ‘‘Tr’’ is identical with the conventional
trace used in Hermitian quantum mechanics. We also note
that (2) is the unique inner product that for a given ortho-
normal basis f ng of H phys renders f� ng orthonormal.

Next, we set d� :� � 	d �� and define the metric
on PH phys according to

 ds2 :� Tr�d�#
 d� �: (3)

After miraculous cancellations of many terms in this
lengthy calculation and using the identity Tr�j i

h�j� � h�j i, we find

 ds2 �
2��  ; �� d ; d � �j �  ; d � j2�

j �  ; � j2

�
2�h j�	 ihd j�	d i � jh j�	d ij

2�

jh j�	 ij2
: (4)

For the case that H is identified as CN endowed with the
standard Euclidean inner product, i.e., h j ~ i :�

PN
n�1 z



i ~zi,

where  � �z1; z2; . . . ; zN� and ~ � �~z1; ~z2; . . . ; ~zN�,
Eq. (4) takes the form

 ds2 �
XN
i;j�1

gij
dzidz
j ; (5)

where

 gij
 :�
2
PN
p;q�1��pq�ji � �pi�jq�z



pzq

�
PN
m;n�1 �mnz



mzn�2

; (6)

and (�ij) is the matrix representation of �	 in the standard
basis of CN . If we identify �	 with the identity operator,
(6) yields the Fubini-Study metric on CPN�1, [20]. To see
this in more detail, consider the caseN � 2. Relabeling the
entries of (�ij) in terms of the real parameters a, b1, b2, c
as

 ��ij� �: a b1 	 ib2

b1 � ib2 c

� �
; (7)

using the homogeneous coordinate � :� z2=z1 in the patch
where z1 � 0, i.e., taking �z1; z2� ! �1; �� ! � (which is
equivalent to setting z1 � 1 and z2 � �), and letting � �:
x	 iy with x, y 2 R we obtain

 ds2 �
2�d	 4b1cx��dx2 	 dy2�

�a	 2�b1x� b2y� 	 c�x
2 	 y2��2

; (8)

where d :� ac� �b2
1 	 b

2
2� � det��ij�. For �ij � �ij, i.e.,

a � c � 1 and b1 � b2 � 0, (8) reduces to the well-
known formula for the Fubini-Study metric on CP1 (which
is a two-dimensional sphere of unit radius) [28].

Equations (1) and (4) show that because the inner prod-
uct of the physical Hilbert space depends on the Hamil-
tonian, so do the orthogonal projection operators represent-
ing the states and the metric on the state space. This is the
root of the subtleties of the Brachistochrone problem in
pseudo-Hermitian quantum mechanics. There is a funda-
mental difference between this problem and its Hermitian
analog. Its proper formulation as a standard variational
problem must include fixed (Hamiltonian-independent)
choices for the initial and final states (as opposed to
unobservable state vectors) as well as for the geometry of
the space in which one minimizes the travel time. One can
apply the argument of [7] and use the results of [20] to
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identify the travel time with a multiple of the distance
traveled by the evolving state in the state space PH phys.
This would make the lower bound on the travel time
proportional to the geodesic distance between the initial
and final states.

In the treatment of the problem offered in [2], both the
boundary conditions and the very notion of distance de-
pend on the choice of the Hamiltonian. Therefore, it is not
clear whether the result corresponds to arbitrarily close
initial and final states or arbitrarily short travel times for
distant states. To conclude that one may achieve ‘‘faster
than Hermitian quantum mechanics’’ evolutions, one must
consider initial and final states with a fixed distance and
consider whether one can find evolutions that take less time
than the lower bound set by Hermitian quantum mechan-
ics. In the remainder of this Letter we prove that this is
indeed impossible [29];

Theorem.—The lower bound on the travel time (upper
bound on the speed) of unitary evolutions is a universal
quantity independent of whether the evolution is generated
by a Hermitian or non-Hermitian Hamiltonian.

To prove this theorem consider an arbitrary non-
Hermitian Hamiltonian operator H that generates a unitary
time-evolution in the Hilbert space H phys defined by a
metric operator �	. Let  I and  F � U��� I be the initial
and final state vectors, where U�t� :� e��itH=@� is the evo-
lution operator for H and � 2 R	 is the travel time. Then
the evolution operator u�t� :� e��ith=@� for the Hermitian
Hamiltonian h :� �1=2H���1=2�, which defines a dynam-
ics in the Hilbert space H , evolves  0I :� �1=2 I into
 0F :� �1=2 F � u��� 0I in time �. This follows from the
fact thatU�t� is �	-pseudo-unitary, i.e.,U�t��1 � U�t�# �
��1
	 U�t�

y�	, [30]. Next, recall that

 �1=2
	 : H phys !H (9)

is a unitary operator [9,10], i.e., for all  , � 2H phys

�  ;� �� h�1=2
	  j�1=2

	 �i. In view of this relation and
(1), it is not difficult to show that while the state �I evolves
into �F in PH phys, the state �0I :� �1=2�I���1=2� evolves
into �0F :� �1=2�F���1=2� in PH . Because the travel
times are identical (��), the speed of the evolution gen-
erated by H will be different from that generated by h if
and only if the length of the curve ��t� joining �I to �F in
PH phys is different from that of the curve �0�t� joining �0I
to �0F in PH . The optimal-time evolution for H corre-
sponds to the case that �0�t� is a geodesic in PH phys. To
prove the above theorem, therefore, it is sufficient to show
that the geodesic distance between �I and �F in PH phys

is identical with the geodesic distance between �0I and �0F
in PH . This follows from the fact that the diffeomor-
phism f: PH phys ! PH that is induced by the unitary
transformation (9), namely,

 f��� :� �1=2����1=2�; (10)

pulls back the Fubini-Study metric on PH to the metric

(6) on PH phys. In other words f is an isometry. Probably
the simplest way of showing this is to use (3) and (10), and
the cyclic identity for the trace to establish

 ds2 � Tr�f�d� �
yf�d� �� (11)

and note that the Fubini-Study metric corresponds to ds2 �

Tr�d�0y d�0 � where �0 :� j ih j
h j i .

Because the distance between �I and �F in PH phys is
the same as the distance between �0I and �0F in PH , and
because given a non-Hermitian HamiltonianH that evolves
�I into �F in time � the Hermitian Hamiltonian h evolves
�0I into �0F in the same time �, the evolution speed forH is
identical to that of h. In particular, there is no advantage of
using a non-Hermitian Hamiltonian H as far as the lower
bound on � is concerned. This argument shows that a
vanishing lower bound corresponds to arbitrarily close
initial and final states; it can never be achieved for distant
initial and final states. For the case of antipodal initial and
final states [4], which is directly relevant to the problem of
constructing unitary NOT operations in quantum computa-
tion [5], we can verify this statement directly.

First we note that without loss of generality we can
confine our attention to two-level systems. If we represent
the initial state �I by the state vector

  I �
1
0

� �
;

the antipodal (final) state �F, that satisfies �F�I �
�I�F � 0, will be represented by a state vector of the form

  F � �
�
�a

� �
;

where � is an arbitrary nonzero normalization constant,
� :� b1 	 ib2 � �12, and we have enforced the condition
h Fj�	 Ii ��  F;  I �� 0 and used (7). The initial and
final states have the form

 �I �
1 �

a
0 0

 !
; �F �

0 � �
a

0 1

 !
;

respectively. This calculation shows that fixing the initial
and final states puts a restriction on the choice of the metric
operator �	 and consequently the allowed Hamiltonian
operator H. One can show that for

  F �
0
1

� �
;

the metric operator �	 must be diagonal and

 Sz �
@

2
1 0
0 �1

� �

satisfies S#
z � Sz, i.e., it is an observable. For general non-

diagonal �	, Sz fails to be an observable; it does not
describe the spin along the z axis and its eigenstates are
not the states of definite spin along the z axis.

The general form of an �	-pseudo-Hermitian two-level
Hamiltonian for the most general �	 is given in [31]. To
find the optimal-time evolution for the above boundary
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conditions, we can pursue three different approaches:
(i) We can use the results of [31] to determine the general
form of H for a given value of �=a and fix the remaining
degrees of freedom in H by minimizing the travel time;
(ii) we can follow the approach of [7] and compute the
minimum travel time by evaluating the geodesic distance
between �I and �F using the metric (8); (iii) we can map
the problem to the one in the standard Hilbert space H and
use the known results for Hermitian Hamiltonians. Here we
employ (iii), because it is more straightforward.

Let �0I and �0F be the corresponding states in PH .
Then a quick calculation shows that �0I and �0F are also
antipodal; �0I�

0
F � �1=2�I�F���1=2� � 0. Therefore, as

implied by the above theorem, the lower bound on the
travel time � is identical with @�=jE1 � E2j, where E1

and E2 are the eigenvalues of h, [7]. Note that because h
and H are isospectral, E1 and E2 are also eigenvalues ofH.

This calculation confirms the statement of the above
theorem for the case that the initial and final states are
antipodal states. It shows that for these boundary condi-
tions the bound obtained for Hermitian Hamiltonians also
applies for admissible non-Hermitian Hamiltonians.
Therefore, non-Hermitian Hamiltonians (that are capable
of generating unitary time-evolutions) do not offer any
advantage in performing a faster unitary NOT-operation.
This conclusion cannot be avoided unless one sacrifices
unitarity. Note that the hypothetical setups that involve
switching between Hermitian and non-Hermitian
Hamiltonians at different times [2] would require a time-
dependent metric operator which in turn violates unitarity
[32]. Therefore such scenarios cannot be used to under-
mine the general applicability of the above theorem.

In this Letter we examined the structure of the projective
space PH phys of physical states in pseudo-Hermitian
quantum mechanics. We derived the form of the natural
metric tensor on PH phys and showed that as a Riemannian
manifold it is isometric to the projective Hilbert space
PH of Hermitian quantum mechanics. Furthermore, we
demonstrated that the time evolution in PH phys that is de-
termined by a diagonalizable non-Hermitian Hamiltonian
with a real spectrum has a mirror image in the usual state
space PH of Hermitian quantum mechanics. This is in-
deed a manifestation of the equivalence of pseudo-Hermi-
tian (and in particular PT -symmetric) quantum mechan-
ics with Hermitian quantum mechanics. A direct conse-
quence of this equivalence is that physical quantities can-
not differentiate between pseudo-Hermitian and Hermitian
quantum mechanics. Pseudo-Hermitian quantum mechan-
ics can only be useful as a technical tool particularly for
dealing with systems with an infinite-dimensional Hilbert
space where, unlike H, the equivalent Hermitian
Hamiltonian h is generically a complicated nonlocal op-
erator. Typical examples are the imaginary cubic potential,
H � p2 	 ix3, and the delta function potential with a
complex coupling, H � p2 	 z��x�, where z 2 C, [33].

I wish to thank Zafer Gedik for bringing reference [5] to
my attention.
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