
Superfluidity and Magnetism in Multicomponent Ultracold Fermions

R. W. Cherng,1 G. Refael,2 and E. Demler1

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

(Received 2 May 2007; published 28 September 2007)

We study the interplay between superfluidity and magnetism in a multicomponent gas of ultracold
fermions. Ward-Takahashi identities constrain possible mean-field states describing order parameters for
both pairing and magnetization. The structure of global phase diagrams arises from competition among
these states as functions of anisotropies in chemical potential, density, or interactions. They exhibit first
and second order phase transition as well as multicritical points, metastability regions, and phase
separation. We comment on experimental signatures in ultracold atoms.
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Fermionic s-wave superfluidity requires pairing be-
tween fermions with different internal states. However,
the nature of superfluidity for N � 2 component systems
and N � 3 differs fundamentally. Superfluidity is sup-
pressed by magnetization for N � 2 because there is one
way to pair and not every particle can find a partner. This
led to proposals for exotic paired states with broken trans-
lational symmetry [1,2] or gapless excitations [3,4]. In
contrast, superfluidity drives magnetization for N � 3.
Condensation energy favors enhancing the populations
for paired components to different degrees depending on
the density of states and interaction energy. This occurs by
cannibalizing the populations for unpaired components.

Ultracold atoms offer direct access to multicomponent
fermionic superfluids. Observation of two component,
equal population superfluids used Feshbach resonances to
tune interactions [5–8]. The population for each compo-
nent is both tunable and essentially conserved, enabling
later experiments on superfluidity with imbalance [9,10].
Recently, scattering lengths and locations of overlapping
Feshbach resonances between all three of the nearly de-
generate lowest sublevels of 6Li were measured [11]. This
suggests experiments with N � 3 are within reach.

In this Letter, we consider the interplay of superfluidity
and magnetism within a mean-field theory of N � 3 mul-
ticomponent fermions, each individually conserved. The
fundamental question we address is which states out of the
large space of order parameters describing both pairing �
and magnetization M are realized in physical systems. Our
approach is based upon the derivation of a novel Ward-
Takahashi (WT) identity [Eq. (6)] which provides funda-
mental constraints on possible mean-field states. We dem-
onstrate this WT identity naturally leads to a specific form
for the microscopic pairing wave function which we call
diagonal pairing states (DPS) illustrated in Fig. 1. In these
states, gapless excitations always exist for N odd and are
still possible for N even.

Having classified the mean-field states, we derive global
phase diagrams describing the competition among the DPS
as shown in Figs. 2 and 3. There are several generic
features of these phase diagrams which arise from the

structure of the DPS and general arguments. For N � 3,
��y acts as an external field for M through M��y. This
coupling vanishes identically on group theoretical grounds
for N � 2 where M couples to � only at higher order.
Pairing always drives magnetization for N odd and generi-
cally does so for N even through the couplingM��y. First
order transitions and corresponding metastability as well as
phase separation regions separate different DPS while
second order transitions separate DPS and the normal state.
These transitions terminate at bicritical and multicritical
points.

Previous theoretical works have also addressed super-
fluditiy with N � 3 components of fermions. This includes
analysis of mean-field states for N � 3 [12,13] and N � 4
[14,15], as well as phase diagrams for N � 3 [16,17]. We
focus on classification of allowed pairing states through
general symmetry arguments and Ward-Takahashi identi-
ties. This complementary approach allows us to obtain
generic and robust features of both the resulting states
and phase diagrams as well as providing a unified perspec-
tive on pairing in multicomponent fermionic systems.

We begin with the action S�H� � S0 � Sint���, where
 

S0�H� �
X
��

��
@� �

r2

2m

�
��� �H��

�
� � �;

Sint��� � �
X
����

����� � � � � � �;
(1)

FIG. 1 (color online). Systematically pairing (ellipses) two
components (colors) at a time generates the diagonal pairing
states shown for N � 3. These states satisfy the microscopic
constraints imposed by Ward-Takahashi identities derived in the
text, while linear combinations do not. Paired (unpaired) com-
ponents have gapped (gapless) quasiparticle excitations.
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describing a dilute gas of fermions with mass m and
attractive contact interactions where  �, � � with � �
1 . . .N are Grassman variables. The partition function is
Z�H;�� �

R
D� � ; � exp��

R�
0 d�

R
dDxS�H;���, � is

the inverse temperature, D the dimensionality, and kB �
@ � 1. For a system with individually conserved compo-
nents, H�� � �����, ����� �

1
4 ���� � ���������� �

��$ ��, contributing ��n� and ���n�n� to the action,
where n� � � � �. Here �� is a chemical potential while
��� describes interactions between fermionic densities.

The standard mean-field theory arises from a Hubbard-
Stratonovich transformation [18] which introduces bosonic
pairing ��� and magnetization M�� order parameters.
They satisfy the saddle-point equations

 M�� � TgM
X
!n;k

G��; ��� �
Tg�;��

2

X
!n;k

F��; (2)

where !n � �2n� 1��=� are Matsubara frequencies, k
are momenta, T is the temperature, and ��� �

1
4g�;�� �

1
2 gM�1�

1
N� for decoupling interaction anisotropies in the

pairing channel. Normal G���i!n;k� and anomalous
F���i!n;k� Green’s functions satisfy

 

G Fy

F �Gy

" #
�
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� 	y �Hy �My

" #
�1

;

(3)

where 	�� � �i!n � k2=2m���� in a matrix notation
with suppressed indices. As matrices, My � M and Hy �
H are Hermitian while �T � �� is skew symmetric.

Having introduced the microscopic action and mean-
field theory, we outline our two main results: the classifi-
cation of allowed mean-field states through WT identities
immediately following and the construction of mean-field
phase diagrams following Eq. (9). Details will be presented
elsewhere [19].

To derive WT identities, we consider field transforma-
tions under the unitary group U�N� acting as

  �!  0� �
X
�

U�� �; � �! � 0� �
X
�

� �U
y
��; (4)

with U�� a unitary matrix. When viewed as a field re-
definition, the coupling constants also transform
H�� ! H0�� �

P
��U��H��U

y
��, ����� ! �0���� �P

�
��U��U�
��
��U
y
��U

y
�� in order to describe the

same physical system. By definition, Z�H;�� � Z�H0;�0�
is invariant.

This invariance arises from a field redefinition and is not
a physical symmetry. Anisotropies in �� and ��� explic-
itly break U�N� ! U�1�N describing N conserved den-
sities in the normal state. The superfluid state spontane-
ously breaks U�N� ! U�1�N ! U�1�N�P, where P is the
number of nonzero pairing amplitudes.

However, it still gives a WT identity (see Ref. [20])
expressing Z�H;�� � Z�H0;�0� under an infinitesimal

transformation to first order

 ��� ����
�Z�H;��
�H��

�
X
�

���� � ����
�Z�H;��
������

� 0

(5)

for arbitrary �, �. Within the mean-field approximation,
this microscopic WT identity becomes an explicit and
simple constraint on M and �

 ��� ����g�1
M M�� �

X
�

�g�1
�;�� � g

�1
�;�������y�� � 0:

(6)

Our first main result is that by analyzing this constraint we
are able to classify the allowed mean-field states which we
denote DPS.

We first give a simple physical description of the DPS.
The microscopic pairing wave function for the DPS is
given by using a Bardeen-Cooper-Schrieffer (BCS)
s-wave state to pair two and only two components at a
time in all possible ways. The WT identity prohibits states
given by linear combinations of the DPS. This gives a
discrete set of mean-field states as illustrated for N � 3
in Fig. 1.

Next we briefly discuss some additional properties of the
DPS which require a more detailed analysis of their struc-
ture. This begins by diagonalizing the matrix order pa-
rameters

 M �
XN
i�1

Miuiu
y
i ; � �

XbN=2c

i�1

�i�v2i�1vT2i � v2ivT2i�1�;

(7)

where bxc is the floor function, Mi (�i) are real (complex)
eigenvalues, and uyi uj � vyi vj � �ij are orthonormal
eigenvectors.

We now show the WT identity of Eq. (6) requires the
eigenvectors to be of the form

 u i;� � vi;� � Si;�; (8)

where Si;� is a N 	 N permutation matrix with exactly one
nonzero matrix element in each row and column. We
denote these states the DPS. Consider the generic case
when �� � ��, g�1

�;�� � g�1
�;��. For N � 3, the DPS

give all possible mean-field states. States not of DPS
form do not satisfy Eq. (6). For N > 3, the DPS give
generic mean-field states. States not of the DPS form can
in principle satisfy Eq. (6), but off-diagonal elements are
generally overdetermined by the saddle-point equations
implying nonzero values are inconsistent.

Notice M is always diagonal as expected for the normal
state where U�1�N symmetry of N conserved densities pro-
hibits mixing between different components. However,
superfluidity spontaneously breaks P factors of U�1�
through off-diagonal elements of ��� where P is the num-
ber of nonzero �i. In addition, quasiparticle excitations are
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gapped for paired components and are gapless for unpaired
components which remain a Fermi liquid. There are at
most bN=2c nonzero �i implying one component is always
gapless for N odd. For N even, a fully gapped quasiparticle
spectrum occurs only when all �i are nonzero.
References [12,13] obtained similar results for N � 3.

After classifying the allowed mean-field states and dis-
cussing some of their properties, we turn to our second
main result on mean-field phase diagrams. For simplicity,
we construct phase diagrams in the weak-coupling or BCS
regime near the superfluid transition for small anisotropies.
However, we stress the preceding analysis of the DPS is
general. We minimize the free energy

 

F � Tr
�

1� 2ĝMa
2ĝM

�M̂�M̂� b
T � TSYM

c

TSYM
c

�̂y�̂
�

� Tr�c�M̂ �̂ �̂y � d�̂y�̂�̂y�̂� �
X
�

2a��̂��M̂��

�
X
��

�
�ĝ�1

�;�� � c
��̂� � ��̂�

2

�
�̂y���̂�� (9)

given by F � �T logZ, where we take �� � EF � ���,
g�1

�;�� � g�1
� � �g

�1
�;��, M�� � gMn�EF� � �M�� with

EF the Fermi energy, n�EF� the free fermion density, and
from here on, quantities with a hat are rescaled with respect
to TSYM

c , the critical temperature without anisotropies.
Here a, b, c, d are Ginzburg-Landau parameters with a,
b, d
 Ê�D�2�=2

F proportional to the density of states at ÊF
describing particle-hole symmetric contributions. In con-
trast, c
 Ê�D�4�=2

F for D � 2 and c
 Ê�D�4�=2
F logÊF for

D � 2 is essentially proportional to the derivative of the
density of states at ÊF and describes particle-hole symme-
try breaking contributions.

General symmetry considerations allow us to classify
the terms in the free energy. U�N� symmetric terms are
under Tr, the matrix trace. Notice the �M̂ �̂ �̂y term where
�̂�̂y acts as an external field to �M̂. On group theoretical
grounds, this term is nonvanishing only for N � 3. Terms
outside the trace explicitly break U�N� ! U�1�N , includ-
ing a term quadratic in �̂. The structure of global phase
diagrams follows from these two terms.

The main consequence of the �M̂ �̂ �̂y term is that
pairing drives magnetization. Physically, this occurs be-
cause a shift in chemical potentials described by M̂ yields a
gain in condensation energy described by �̂�̂y. This ge-
nerically occurs unless �̂�̂y / 1 is particle-hole symmet-
ric with 1 the identity matrix. Only when all components
pair and j�ij � j�jj does this occur. For N odd, one
component is always unpaired so magnetization always
develops. For N even, only when the N=2 independent
equations determining �i give j�ij � j�jj is it possible
to have pairing without magnetization.

A similar situation occurs for p-wave pairing in 3He or
the organic superconductors. Unitary states describe pair-

ing decoupled from magnetization while nonunitary states
describe pairing coupled to magnetization [21]. Only a
single constraint jd	 d�j � 0 on the d-vector describing
p-wave pairing is necessary for a unitary state. It is more
difficult for the N=2 independent equations determining �i
to give j�ij � j�jj for the analog of unitary states in
multicomponent s-wave pairing.

We now discuss the N � 3 phase diagram in Fig. 2 with
given interactions satisfying the generic condition
�ĝ�1

�;�� � �ĝ�1
�;��. We consider both fixed chemical poten-

tial �̂� and fixed particle density n� as
 

�̂� � ÊFx0;� � �̂1x1;� � �̂2x2;�;

n� � n�EF�x0;� � n1x1;� � n2x2;�;
(10)

where x0 � �1; 1; 1�, x1 � �1;�1; 0�=
���
2
p

, x2 �

�1; 1;�2�=
���
6
p

, and �̂i, ni parametrize anisotropies.
First consider fixed �̂� (top Fig. 2). When T > TSYM

c ,
small anisotropy favors the normal state. Increasing an-
isotropy favors pairing by increasing the density of states
for some components at the expense of others. This drives a
second order transition into one of the three DPS. Tuning
the direction of the anisotropy drives first order transitions
between DPS when two of these states are degenerate
along lines of enhanced symmetry. First order lines termi-
nate at bicritical points from which metastability regions,
where an additional DPS is locally stable, branch out. This
is the expected behavior for quadratic symmetry breaking
[22,23]. Bicritical points terminate at the U�3� symmetric
multicritical point when T � TSYM

c . Below TSYM
c , first

FIG. 2 (color online). N � 3 phase diagrams for T > TSYM
c

(left) and T < TSYM
c (right) against anisotropies in chemical

potential �̂� (top) and density n� (bottom). NS denotes the
normal state and (��) a state with �, � paired. Solid (dashed)
lines are first (second) order transitions while dotted lines are
boundaries for metastability regions. MSi denotes regions with i
additional metastable paired states and PSi a phase-separated
mixture of i paired states.
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order lines separate DPS and a region near small anisot-
ropy where all three DPS are (meta)stable appears.

The Maxwell construction gives fixed n� phase dia-
grams (bottom Fig. 2) from those for fixed �̂�. The com-
pressibility tensor 
�� / �@2F=@�̂�@�̂� at fixed �̂� has
positive eigenvalues except at boundaries between DPS.
Here, �̂�̂y and thus �M̂ jump discontinuously. First order
lines at fixed �̂� when two DPS are degenerate expand into
phase-separated mixtures of those two states at fixed n�.
For T < TSYM

c , the zero anisotropy point where all three
DPS are degenerate expands into a phase-separated mix-
ture of those three states at fixed n�.

Now consider the N � 4 phase diagram in Fig. 3 with
fixed chemical potential given by
 

�̂� � ÊFy0;� � �̂0 cos���y1;� � �̂0 sin��� cos���y2;�

� �̂0 sin��� sin���y3;�; (11)

where y0 � �1; 1; 1; 1�, y1 � �1;�1; 0; 0�=
���
2
p

, y2 �

�1; 1;�2; 0�=
���
6
p

, y3 � �1; 1; 1;�3�=
������
12
p

, and �, � pa-
rametrize the anisotropies.

For N > 3, condensation energy favors development of
more pairing amplitudes as T is lowered. The normal state
competes with the six DPS with only one pairing amplitude
for T > TSYM

c (top right Fig. 3). However, the three DPS
with two pairing amplitudes and all components paired
eventually dominate the phase diagram for T < TSYM

c
(top middle Fig. 3). Phase diagrams still exhibit second
order transitions from the normal state to DPS and first
order transitions between DPS.

We now comment on trapping effects and detection
methods for applications to ultracold atoms. In the large

particle number BCS regime, the local density approxima-
tion accurately maps phase diagrams at fixed chemical
potential to phase diagrams with trapping. DPS are dis-
tinguished by both densities and pairing amplitudes for
different components. State-selective imaging of density
distributions [9,10] and radio-frequency spectroscopy of
the pairing gap [24] can be used to detect signatures of the
various paired states.

In summary, we have studied the essential role magne-
tism plays in superfluidity of multicomponent fermions. By
analyzing constraints imposed by Ward-Takahashi identi-
ties, we classified the allowed mean-field pairing states
with both magnetization and pairing order parameters
and used them to construct global phase diagrams. These
phase diagrams have a rich structure with first and second
order transitions meeting at multicritical points as well as
metastability and phase-separated regions. We discussed
applications to ultracold fermions.
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FIG. 3 (color online). Representative N � 4 phase diagrams
for T > TSYM

c (left) and T < TSYM
c (middle) against anisotropies

in chemical potential �� with legend (right) for the global
minimum (top) and first metastable state (bottom). (�i�i; . . . )
denotes �i, �i paired and white regions NS the normal state
(top) or absence of metastable states (bottom). First (second)
order transitions separate different paired states (paired states
from the normal state).
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