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We theoretically consider a spin polarized, optically trapped condensate of 8’Rb atoms in F = 1. We
observe a transfer of atoms to other Zeeman states due to the dipolar interaction which couples the spin
and the orbital degrees of freedom. Therefore the transferred atoms acquire an orbital angular momentum.
This is a realization of the Einstein—de Haas effect in systems of cold gases. We find resonances which
make this phenomenon observable even in very weak dipolar systems, when the Zeeman energy difference
on transfer is fully converted to rotational kinetic energy.
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Magnetic effects in ultracold quantum gases have been
subject to intense theoretical and experimental studies
during recent years. So far most of these investigations
have concentrated on short-range interactions as the domi-
nant spin exchange process in spinor condensates of >*Na
[1] and 8’Rb [2—4]. These interactions result in rich mul-
ticomponent physics as demonstrated by the observation of
phenomena like magnetic phases [1,3,4], coherent spin
dynamics [3—6], domain formation [7], and a magnetically
tuned spin-mixing resonance [8]. Including magnetic
dipole-dipole interactions would further enhance the rich-
ness of these systems and, in particular, their anisotropic
nature is expected to add completely new aspects. For
relatively weak dipolar interactions phenomena like the
Einstein—de Haas effect [9], spontaneous magnetization
[10,11], squeezing, and entanglement [11] have been pre-
dicted. Most of these studies concentrate on the recently
achieved case of a chromium Bose-Einstein condensate
[12], as it is commonly believed that these effects are
practically unobservable in the widely available alkali
condensates due to the smallness of dipolar interactions
in these systems. However, as pointed out in [11], for Rb
in the F = 1 state the size of the dipolar interactions as
compared to the spin-mixing part of the short-range inter-
actions reaches 10%, such that dipolar effects might be
observable in this system.

In this Letter, we show that under the right conditions the
dipolar interactions can even dominate the dynamics of a
87Rb spinor condensate, making it a promising candidate
for the observation of the Einstein—de Haas effect [13].
Our calculations demonstrate the existence of resonances
that amplify the effect of dipolar interactions and can be
tuned by the magnetic field or by the trap geometry. They
occur when the Zeeman energy fits the rotational kinetic
energy per particle. The resonances we find explore a new
regime in comparison with that considered in Ref. [9] for a
32Cr condensate, where the dipolar energy (not a kinetic
one) is related to the Zeeman energy.
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In the second quantization notation, the Hamiltonian of
the system we investigate is given by
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where repeated indices (each of them going through the
values +1, 0, and —1) are to be summed over. The field
operator #;(r) annihilates an atom in the hyperfine state
|F =1, i) at point r. The first term in (1) is the single-
particle Hamiltonian (H,) that consists of the kinetic en-
ergy part (with m being the mass of an atom) and the
trapping potential U, (r). The second term describes the
interaction with the magnetic field B with y being the
gyromagnetic coefficient which relates the effective mag-
netic moment with the hyperfine angular momentum (u =
vF). The terms with coefficients ¢, and ¢, describe the
spin-independent and spin-dependent parts of the contact
interactions, respectively—c, and c, can be expressed
with the help of the scattering lengths aq and a, which
determine the collision of atoms in a channel of total spin 0
and 2. One has ¢, = 4mh*(ay + 2a,)/3m and c, =
4mh*(a, — ay)/3m [14], where a, = 5.387 nm and a, =
5.313 nm [15]. F are the spin-1 matrices. Finally, the last
term describes the magnetic dipolar interactions. The in-
teraction energy of two magnetic dipole moments p; and
M, positioned at r and r’ equals
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where the operator JH .. originates from the the first four
terms in the Hamiltonian Eq. (1) whereas FH , corresponds
to the dipole-dipole interactions [the last term in Eq. (1)].
The diagonal part of HH , is given by H .;; = Hy + (co +
)il + (co + fz)jj/g‘j’o +(co — el iy, q{cog =
Hy + (co + co)iblhy + C;okl’gl/’o + (co +A02A)¢i11//—1a
H 1y =Hy+(co— )il ihy + (co + )b by + (co +
cz)lﬁtld},,. The off-diagonal terms that describe the
collisions not preserving the projection of spin of each
atom (although the total spin projection is conserved)
equal j-[ClO = Czl,z-illz}o, j{cofl = C2l72fglj/] . Moreover,
H .,_, = 0. On the other hand, for the F{, term one
has Hdij = [d r) (r’)Vfij’nklpk(r’). This term is respon-
sible for the change of total spin projection of colliding
atoms. It turns out that when two atoms interact the total
spin projection (AM) can change at most by 2. In par-
ticular, the diagonal elements of { ; lead to the processes
with AM; = *1. In addition to such processes, the off-
diagonal terms of H , introduce the interaction that
changes the spin projection AMyp by =2. It happens
when both atoms initially in the same state go simulta-
neously to the nearest (in a sense of magnetic number my)
state or in the case when atoms in different but neighboring
components transfer to the states shifted in number my by
+1 or —1. There is no way for the atom to be transferred
directly from the my = 1 to the mp = —1 state; therefore,
the populating of the mr = —1 component is a second
order process.

Hence, the dipolar interaction does not conserve the
projection of total spin of two interacting atoms, nor is
the projection of total orbital angular momentum preserved
[see (4)]. However, the dipolar interaction couples the spin
and the orbital motion of atoms as revealed by the last
relation in (4)

[Vg Fi. + Fp.] # 0, (Vg Ly + Ly ] # 0,

4
(Vo Ly, + Ly, + Fi. + Fp.] = 0.

Therefore, going to myp = 0, —1 states atoms acquire the
orbital angular momentum and start to circulate around the
center of the trap. This is the realization of the famous
Einstein—de Haas effect in cold gases.

To solve Eq. (3) we neglect the quantum fluctuations and
replace the field operator ¢;(r) by an order parameter i, (r)
for each component and apply the split-operator method.
All integrals appearing in H ,; ; are the convolutions and
we use the Fourier transform technique to calculate them.

To find analytical formulas for the Fourier transforms of
the components of the convolutions that do not change
during the evolution we apply the regularization procedure
described in Ref. [16].

The gyromagnetic coefficient for 3Rb atoms in an F =
1 hyperfine state is positive and equals y = % wp/h. We
prepare an initial state of the condensate as the one with all
magnetic moments aligned along the magnetic field; i.e.,
all atoms are in my = 1 component. To this end, we run the
mean-field version of Eq. (3) in imaginary time while the
magnetic field is turned on (and equal to B = 0.73 mG for
a spherically symmetric trap with the frequency w =
27 X 100 Hz). Then we reverse the direction of the mag-
netic field and look for the transfer of atoms to other
Zeeman states.

Our starting condition (all atoms in my = 1 state) sup-
presses the short-range spin dynamics and initially the
myp = 1 state is depleted only due to the dipolar interac-
tion. Usually we observe a small number of atoms going
from the Zeeman state myp = 1 to the my = 0, —1 states.
However, on resonance (see Fig. 1) the transfer to the other
states can be of the order of the initial population of my =
1 component. This transfer is as large as in the case of
chromium condensate [9] despite the fact that the dipolar
energy (u’n, where n is the atomic density) is approxi-
mately 100 times smaller. The only difference is that the
time scale corresponding to the maximal transfer is about
100 ms, i.e., 100 times longer than for chromium. This can
be understood as follows. For 3’Rb the dipolar energy is the
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FIG. 1 (color online). Transfer of atoms to my =0, —1
Zeeman states as a function of time. Initially, N =2 X 10°
atoms were prepared in the my = 1 component in a spherically
symmetric trap with the frequency w = 27 X 100 Hz. The
residual magnetic field equals —0.029 mG (solid black lines,
on-resonance case) and B = —0.015 mG, —0.036 mG (blue
dotted lines and red dashed lines, respectively, off-resonance
case). The lower panel shows the number of atoms in mp = 1
state and the time dependence of the orbital angular momentum
per atom. The maximum of the latter (=0.35%) is consistent with
the transfer of 30% of atoms to mp = 0 state (where a singly
quantized vortex is formed) and 3% of atoms to mp = —1 state
with the doubly quantized vortex.
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smallest energy of the problem and is only a perturbation
as compared to the kinetic rotational energy and the
Zeeman energy. An efficient population transfer from
mp = 1 to mp = 0 due to the dipolar interactions is only
possible when the total energies (the sum of mean-field,
trap, kinetic, and Zeeman energies) in these states are
approximately equal. Figure 2(a) clearly shows that the
total energy tends to equalize on resonance, which is not
true in the off-resonant case. Numerics also shows
[Fig. 2(b)] that the above condition can be fulfilled only
when the Zeeman energy fits the rotational kinetic energy:
MBs = €, It means that the resonant magnetic field is
inversely proportional to the magnetic moment of an atom,

Bes = 1/ . &)

Surprisingly, the smaller the atomic magnetic moment the
larger the value of the resonant magnetic field. For chro-
mium condensate, however, the dipolar energy is larger
than the kinetic energy. Therefore, in this case the reso-
nance condition should be derived by relating the Zeeman
and the dipolar (not the kinetic one) energies, i.e., B, =
w?n [9]. This results in a condition B,y * u which differs
qualitatively from (5).

The maximal transfer is reached at a time which is of the
order of the characteristic time scale determined by the
dipolar interactions (/u’n). Since the magnetic moment
of the 8’Rb atom is 12 times smaller than that of >>Cr we
have to wait hundreds of milliseconds (not a fraction of a
millisecond as in Ref. [9]) to see the action of resonance.

Figure 2 illustrates the ideas just discussed. In the left
frame the total energies of the myr = 1, 0 components are
plotted as a function of time both in on- and off-resonance
cases showing that the resonances we find are dynamical
phenomena. The transfer gets maximal when the energies
approach each other (perhaps crossing both curves would
require the dynamical tuning of the resonance by changing
the magnetic field). On the contrary, almost no transfer of
atoms occurs when the energy curves keep away.
Simultaneously, the right frame proves that on resonance
the Zeeman energy (in fact, together with the kinetic
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FIG. 2 (color online). Total energy for my = 1,0 components
as a function of time (left frame). All parameters are the same as
in Fig. 1. The resonance happens for B = —0.029 mG (solid
black lines) whereas the off-resonance cases are represented by
B = —0.015 mG (blue dotted lines) and B = —0.036 mG (red
dashed lines). The right frame shows AE = (E;} /N, + uB —
Erot)/erot» where €rot = Erot/NO'

energy) is transferred to the rotational kinetic energy of
atoms in the my = 0 component.

Huge transfer of atoms to my = 0, —1 states is the
realization of the Einstein—de Haas effect in cold gases.
Numerical analysis of phases of spinor components shows
that the vortices are generated in myp = 0, —1 spin states
and atoms in my = 0, —1 rotate around the quantization
axis. In mp =0 and my = —1 components singly and
doubly quantized vortices are formed, respectively, as a
result of total angular momentum conservation. The den-
sity in these states is fragmented and the number of rings
results from the symmetry of dipolar interaction, Fig. 3.
Similar fragmentation was already predicted in the case of
52Cr condensate in Ref. [9].

Figure 4 (upper frame) shows the position and the width
of the resonance displayed in Fig. 1. Similar behavior is
observed when the value of the reversed magnetic field is
kept constant and the trap geometry is changed (lower
frame). Here, the maximal transfer of atoms is obtained
in a cigar trap with the aspect ratio  ,/ w, = 4 with almost
50% efficiency at B = —0.073 mG. The inset shows the
resonance at an experimentally easier to control value of
magnetic field B = 0.3 mG but still detectable number of
atoms in my = 0 state. Note that in all these cases the
maximal atomic density is of the order of 10'* cm™3
making the three-body losses low enough and hence allow-
ing the observation of population transfer on a time scale of
the order of hundreds of milliseconds. To understand
quantitatively the resonance we start from the condition
discussed earlier: wB.; = E,y/Ny, where E, is the rota-
tional energy of the my = 0 component which is assumed
to be a singly quantized vortex, given within the Thomas-
Fermi approximation by #y(p, ¢, z) = {{A — mw?*(p* +
22)/2 — 12/ (2mp?)]/co}'/?e®. Here, the chemical poten-
tial A is obtained by the requirement that the number of
atoms in the ¢, state equals Ny. One can tune to the
resonance in two ways: (i) by adjusting the magnetic field
B, and (ii) by changing the trap geometry that influences
the rotational energy entering the resonance condition and
keeping the magnetic field constant. The curve resulting
from the condition wB.., = E,;/Ny in the case of the
spherically symmetric trap is plotted in Fig. 5. The resonant

(a) (b)

FIG. 3. Density in the xz plane (the z axis goes vertically) of
myp = 0 (a) and my = —1 (b) spin components in on-resonance
case at 140 ms.
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FIG. 4. Maximal transfer of atoms to my = 0, —1 states as a
function of the residual magnetic field (upper frame) and the trap
geometry (lower frame). For lower frame w, = 277 X 100 Hz,
B = —0.073 mG, and N,, = 8 X 10°. Inset shows the reso-
nance at B = —0.3 mG for w, = 27 X 20 Hz and N, ; = 10°.

magnetic field is uniquely related to the number of atoms in
the my = 0 component. However, this number depends on
the initial number of atoms in the my = 1 state and can be
found only numerically. To verify the resonance condition
we compare the numerical results (marked by solid circles
and with additional information regarding the initial num-
ber of atoms in the my = 1 component) with the Thomas-
Fermi results. The agreement is good, for example, when
initially one has N; = 2 X 10° atoms in the m; = 1 com-
ponent (in this case the maximal transfer of atoms to the
my = 0 state equals 6 X 10*). The solid line in Fig. 5 gives
for the value of N, = 6 X 10* the value of the resonant
magnetic field = 0.03 mG which is very close to the
numerical value (see upper frame in Fig. 4). For other
systems, e.g., 2Cr, the condition uBe; = E,o/N,, sug-
gests that the value of the resonant magnetic field is even
=10 times smaller since pc,./ur, = 12 and E,../N_, for
chromium looks similar to E,./N, in the rubidium case.
In conclusion, we have shown the existence of dipolar
resonances in rubidium spinor condensates. The reso-
nances occur when the Zeeman energy of atoms in the
mp = 1 component, while transferring to the my = 0 state,
is fully converted to the rotational kinetic energy. This is so
far an unexplored regime. Symmetries of the dipolar inter-
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FIG. 5. Comparison between numerics (solid circles) and the
Thomas-Fermi approximation. Solid line indicates the value of
the magnetic field at resonance (for spherically symmetric trap)
as a function of number of atoms in the my = 0 state.

action force the atoms in my = 0, —1 states to circulate
around the quantization axis and form singly and doubly
quantized vortices, respectively. Therefore, dipolar reso-
nances is a route to the observation of the FEinstein—
de Haas effect (as well as other phenomena related to the
dipolar interaction) in weak dipolar systems.
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