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We calculate the solvation free energy of proteins in the tube model of Banavar and Maritan [Rev. Mod.
Phys. 75, 23 (2003)] using morphological thermodynamics which is based on Hadwiger’s theorem of
integral geometry. Thereby we extend recent results by Snir and Kamien [Science 307, 1067 (2005)] to
hard-sphere solvents at finite packing fractions and obtain new conclusions. Depending on the solvent
properties, parameter regions are identified where the � sheet, the optimal helix, or neither is favored.
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Understanding protein function requires the knowledge
of native structures. This has for a long time motivated
researchers to attempt the prediction of native structures of
proteins in their cellular environment based on the given
amino acid sequences. But to date no entirely satisfactory
solution of the problem has been found [1]. Stunningly,
tertiary structures of proteins in living organisms can be
reduced to an estimated number of only about 1000 basic
protein folds [2] which are composed according to a set of
‘‘constructional rules’’ and which are characterized by a
particular stability against mutation. Backed by these ob-
servations it has been suggested to consider the basic folds
as primary natural forms obeying physical laws in the spirit
of a Platonic model of life [3]. Guided by this idea of
certain robust motifs in protein folding, Banavar and
Maritan introduced a simple geometrical model for folding
which reproduces many of the basic building blocks of real
proteins [4]. In their model, the protein backbone is viewed
as an impenetrable, flexible tube with finite thickness.
Locally, this results in an effective three body interaction
due to the limited local curvature and, globally, in a spe-
cific interaction of cylindrical segments. While the first
feature could also be modeled by a chain of tethered
spheres with an appropriate three body potential, the sec-
ond is genuine to the tube model. To complete the model,
an attractive potential acting between different parts of the
tube is introduced mimicking the effect of hydrophobic
amino acids. These ingredients are sufficient to drive the
model protein into the marginally compact regime where it
displays conformations which resemble closely basic folds
of real proteins. As the model does not include any chemi-
cal details, the results figure indeed as ‘‘Platonian folds.’’

Here we devise an efficient method for the calculation of
solvent effects, which are crucial for protein folding [5], in
particular, due to solvent entropy [6]. To this end we
combine Hadwiger’s theorem [7] of integral geometry
with density functional theory (DFT) for classical fluids
[8]. Our modified tube model allows us to include directly
the cellular medium without resorting to the effective
attractive potential of the Banavar-Maritan model. We
consider mainly the purely entropic hard-sphere solvent

and thereby extend a recent study by Snir and Kamien
[9,10] to solvents beyond the limit of vanishing density.
Depending on the solvent properties, conditions are dis-
cerned for which a tightly packed helix or the � sheet (see
below) is favored. As an outlook we mention results for a
simple solvent with intermolecular attraction.

Consider a body B corresponding to a closed and
bounded set in R3 which, at a later stage, will represent
the protein immersed in the solvent (see Fig. 1). We
characterize B by its four Minkowski measures: the volume
V�B�, the surface area A�B�, the integral mean curvature
C�B� �

R
@B

1
2 �ß1 � ß2�dA, and the integral Gaussian cur-

vature X�B� �
R
@B ß1ß2dA, where ß1 and ß2 are the local

principal curvatures. X�B�=4� equals the Euler character-
istic � of B. For instance, � � 1 for all B which are
topologically equivalent to a sphere. The measures M �
V; A; C; X share the following properties [7]: (i) motion
invariance, i.e., for every rotation and translation g one has
M�gB� � M�B�; (ii) conditional continuity, i.e., for every
sequence of convex bodies Bn which converges (with
respect to the Hausdorff metric) to B for n! 1 one has
that M�Bn� ! M�B�; and (iii) additivity, i.e., for the union

FIG. 1 (color online). Left: Helical conformation of a protein
in the tube model. Right: A possible parallel surface for the same
conformation. Because of self-intersection one or several helical
intersection lines appear (in red; thicker lines) giving rise to
additional contributions to C and X, and hence to Fsol.
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B1 [ B2 of two bodies B1 and B2 one has M�B1 [ B2� �
M�B1� �M�B2� �M�B1 \ B2� where B1 \ B2 is the inter-
section of B1 and B2. The remarkable result obtained by
Hadwiger is that every functional ’�B� with properties (i),
(ii), and (iii) is of the form ’�B� � cVV�B� � cAA�B� �
cCC�B� � cXX�B� with constant coefficients cV , cA, cC,
and cX [7].

In the mid-1990s Hadwiger’s theorem was introduced
for the first time to the physics of complex fluids in a study
of microemulsions [11]. Recently, detailed quantitative
analyses have introduced the approach into the field of
hard-sphere fluids [12]. The idea of this so-called morpho-
logical thermodynamics is to identify a thermodynamic
quantity, which in the present context is the solvation
free energy Fsol, with the above functional ’. In a physi-
cally motivated notation for the coefficients this reads

 Fsol � pV � �A� �C� ��X: (1)

Here V, A, C, and X are the geometric measures attributed
to a protein in a given conformation. The thermodynamic
coefficients are the solvent pressure p, the planar surface
tension �, the bending rigidity �, and �� which couples to
the topological invariant X. According to Hadwiger’s theo-
rem the coefficients do not depend on the protein confor-
mation. They encode solvent properties depending on the
temperature, the chemical potential, and, except for the
pressure p, on the specific interaction between the solute
and the solvent.

The morphological form [Eq. (1)] makes computations
of Fsol very efficient even for complex protein conforma-
tions as it allows one to treat solvent and protein properties
separately instead of performing time-consuming calcula-
tions for the solvent in complex protein geometries [13].
The applicability of Eq. (1) depends on whether Fsol obeys
additivity [property (iii) of Hadwiger’s theorem] in the
physical system. It becomes invalid for highly confined
portions of the solvent where additivity would basically
imply that different segments of a protein would not expe-
rience any solvent mediated force. Equation (1) is also
inappropriate for fluids with long-ranged correlations,
e.g., near a critical point or at wetting and drying transi-
tions [14]. However, for the solvents considered here cor-
relations decay rapidly, i.e., within a few particle di-
ameters. Therefore the assumption of additivity is expected
to be a reliable approximation. In order to estimate the
corresponding error, we have calculated the grand potential
of a hard-sphere fluid (radius R, packing fraction � �
0:38) inside a cylinder (radius Rcyl) with DFT. We used
the White-Bear functional Mark II [15] which is a recent
version of fundamental measure theory [16] known to
compare very well with simulation data. The overall agree-
ment of the DFT results with Eq. (1) is excellent; only for
Rcyl < 5R the DFT data start to oscillate around the mor-
phological prediction due to packing effects. For a quantity
as sensitive as the surface tension the amplitude of these
oscillations is, however, below 20% even for strong con-

finement at Rcyl ’ 2R. Thus deviations from Eq. (1) do
occur in extreme confinement but these are sufficiently
small and do not affect the leading behavior. Previously,
Eq. (1) has been shown to perform excellently for solutes
of simple convex shapes [12].

We have calculated the measures V, A, C, and X for a
broad range of protein conformations in the tube model
covering two principal secondary motifs, namely,
helices and � sheets. Helical tube conformations are
given by all the points with a distance smaller than or
equal to Rt from the centerline given by �x; y; z� �
�Rh cos�; Rh sin�; Ph�=2��, where � 2 ��1;�1� and
Ph and Rh are the helix pitch and radius, respectively
(see the left part of Fig. 1). Because of self-intersection
constraints not all combinations of Rt, Ph, and Rh are
admissible. The configurations belonging to the boundary
of the admissible parameter region give rise to two regimes
of close-packed helices [17]. The turn-to-turn distance
limited close-packed (TTCP) regime is reached for given
Rh > R�h ’ 0:8622Rt by minimizing Ph such that consecu-
tive turns of the helix touch each other. For Rh < R�h the
radius of curvature of the TTCP helix centerline becomes
smaller than Rt which would cause the tube to bend so
strongly that it self-intersects locally. In this curvature
limited close-packed (CCP) regime Ph must be chosen
larger than according to the TTCP constraint in order to
maintain the centerline curvature equal to (rather than
above) 1=Rt. The close-packed helix with Rh � R�h, which
has Ph � P�h ’ 2:512R�h, is termed optimal as it appears in
packing problems of tubes subject to local compactness
conditions [18]. Its geometry is closely related to that of
helical conformations of many actual proteins [18]. If
contributions from turns are neglected � sheets correspond
to neighboring sections of the tube having straight center-
lines and being aligned parallel. This is realized in the limit
Rh ! 1 in which the curvature of the centerline vanishes.

For the calculation of V, A, C, and X the parallel surface
at the distance R (solvent particle radius) from the actual
protein surface is the most suitable as it indicates the
solvent-accessible regions (see the right-hand part of
Fig. 1). Because of self-intersection the parallel surface is
rather complicated such that the calculations of the geo-
metric measures have to be carried out numerically.
Intersection lines give rise to additional curvature contri-
butions which can be calculated analogously to the case of
intersecting spheres [19]: Cline � ���=2� �=2�‘ and
Xline � �2‘ßline cos��=2�. Here � is the opening angle of
the groove associated with the intersection line and ßline

denotes the curvature of the intersection line of length ‘.
Results for V, A, and C of the close-packed helices are

shown in Fig. 2. X vanishes as the parallel body of a helix is
topologically equivalent either to a solid or a hollow cyl-
inder. We have subtracted the (R dependent) values of the
volume V� and of the surface area A� corresponding to a �
sheet. These are approached in the limit Rh ! 1. For C
one has C� � 0. The figure focuses on the TTCP regime
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(Rh > R�h). Only the onset of the CCP regime (Rh < R�h) is
shown. Because of the rather strong increase of Ph in the
CCP regime the geometric measures rapidly approach Vstr,
Astr, and Cstr which are the values for a stretched tube
(Rh � 0, Ph � 0). The values �V�str � �Vstr � V��=�R

3
t

~L�
and �A�str � �Astr � A��=�R2

t
~L� are tabulated in the figure

[Cstr=�Rt ~L� � �]. ~L � L=Rt is the dimensionless length of
the tube; contributions from the end points of the tube are
neglected (L! 1). For R< Ruw ’ 0:0835Rt, the curves
for V have their global minimum at Rh � R�h. At R � Ruw

the minimum starts to move to Rh > R�h. In the curves for
A, if R> Rs ’ 0:0465Rt, an almost linear decrease is con-
nected via a cusp to an interval in which A increases
towards A�. Exactly at the position of these cusps, the
curves for C are discontinuous such that C=�Rt ~L� drops
from a value between 1.5 and 2.0 to almost zero. The
discontinuity in C marks the transition between two topo-
logically different regimes: at small values of Rh the body
parallel to the close-packed helix is equivalent to a cylin-
der; i.e., solvent particles can only probe the exterior of the
helix. At large values of Rh the parallel body is equivalent
to a hollow cylinder; i.e., solvent particles fit into the cavity
formed by the helical tube conformation. Very small sol-
vent particles (R< Rs) provide an exception. They can
enter the cavity even if Rh is lowered towards R�h. Thus,
while providing a very efficient packing of a tube, the
optimal helix leaves space for spheres with R � Rs enter-
ing its inside. For these spheres, C displays a jump at Rh <
R�h. This corresponds to the formation of a connection

between the interior of the cavity and the bulk, being
established due to the increase of the pitch Ph in the
CCP regime.

Snir and Kamien have calculated Fsol [9] using the
Asakura-Oosawa (AO) model [20] which corresponds to
taking � � � � �� � 0 due to the neglect of the solvent
particle interaction. Thus within this model Fsol can be
inferred directly from the results for V (see Fig. 2, which is
restricted to the set of close-packed helices; detailed analy-
sis shows that minima in V are always assumed on this set).
Accordingly, for solvent particles with radius R< Ruw the
optimal helix minimizes Fsol. For larger solvent particles,
Fsol assumes its minimum for certain Rh > R�h. This was
interpreted in Ref. [9] such that larger solvent particles lead
to a favoring of sheetlike folding. We emphasize that the
AO model is valid only for asymptotically low solvent
packing fractions � at which, however, Fsol is very small
because the pressure p / �. Accordingly, in this limiting
case energetic contributions of origin other than the solvent
dominate. Using Eq. (1) allows us to obtain reliable results
for Fsol of the close-packed helices in a hard-sphere solvent
at realistic, nonvanishing densities. For the thermodynamic
coefficients we use accurate analytical results obtained
recently from classical DFT [15,21]. As a function of R
and �, we find three different regions (see Fig. 3) in which
Fsol is minimal: (i) for Rh � R�h (optimal helix), (ii) for
Rh ! 1 (� sheet), and (iii) for certain finite values Rh >
R�h (unwound helix), respectively. We have checked the
stability of the close-packed conformations by slightly
increasing Ph which always increases Fsol.

In the limit �! 0 the result of Snir and Kamien is
recovered. However, our results for �> 0 show that their
conclusion that larger solvent particles favor� sheets is not
valid. On the contrary, the � sheet minimizes Fsol for small
solvent particles (Rs 	 0:05Rt) with � * 0:3. Moreover,
the picture conveyed in Refs. [9,10] that helices from the

FIG. 2. Geometric measures V, A, and C for a range of close-
packed helical tube conformations, which have minimal Ph.
Calculations are performed for the parallel body at different
distances R (radius of solvent hard core). The integral Gaussian
curvature X vanishes, consistent with the given topology. Rh >
�<�R�h corresponds to the TTCP (CCP) regime.

FIG. 3. Diagram of the different protein structures which
minimize Fsol in a hard-sphere solvent with packing fraction �
and solvent radius R. Transitions between the regions are either
continuous (dashed lines) or discontinuous (full line) in Rh. In
the limit �! 0 there is no transition at R � Rs. The systems
indicated by dots are discussed in Fig. 4.
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unwound regime at large R are gradually drifting to a �
sheetlike geometry upon increasing R is not correct. This
can be inferred from Fig. 4(d) which shows for two sol-
vents that the minimum at Rh > R�h, generated by the
volume contribution, is separated from the � sheetlike
configuration by a free energy barrier arising from the
surface area contribution (see Fig. 2). The discontinuity
in these curves is due to the contribution of C. It corre-
sponds to the special helix radius at which, upon decreas-
ing Rh, the solvent is squeezed out from the inner part of
the helix. Once this is completed, the system can easily
relax to the optimal helix configuration at smaller Rh. The
discontinuity in Fsol is a consequence of the hard body
interaction between the protein tube and the solvent parti-
cles. It would be smeared out for soft interaction potentials.
Other free energy curves for different solvent states are
shown in Figs. 4(a)–4(c). From these the presence of
continuous (in Rh) and discontinuous transition lines be-
tween the regions in Fig. 3 can be inferred. In the table of
Fig. 4 we compare Fsol for a stretched tube with the value
corresponding to the � sheet [�F�str � 
�Fsol�str �

�Fsol���=�kBT ~L�]. The large values of �F�str demonstrate
that in a hard-sphere solvent both the optimal helix and the
� sheet are clearly favored free energetically compared
with the stretched tube configuration which is devoid of
any economic packing. We further note that the curves for
Fsol become flatter with increasing R [compare the scales

in Figs. 4(b)–4(d)]. Thus for large R intramolecular energy
contributions of the protein are expected to significantly
determine the native state. Therefore it appears to be
problematic to follow Ref. [9] in invoking a solvent in-
duced tendency to � sheetlike folding in this region.

In the general case, when Fsol is large, it has been argued
that energy gains from intramolecular contributions such
as hydrogen bonds between different amino acids are
compensated to a large extent by the dehydration penalty
which occurs upon folding of a protein [6]. For studying
this interplay in more detail it is useful to extend the
morphological approach Eq. (1) to a more realistic solvent
with intermolecular square-well-like attraction and which
interacts via repulsion (hydrophobicity) or attraction (hy-
drophilicity) with the protein. The corresponding thermo-
dynamic coefficients can be obtained by fitting Eq. (1) to
DFT calculations of Fsol for simple solutes such as spheres
and cylinders which repel or attract the solvent, whereas
the results for the geometric measures of the protein remain
unchanged. Preliminary studies of Fsol confirm the role of
hydrophobic side chains as a driving force for protein
folding.
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FIG. 4. Fsol�Rh� relative to its value at Rh � 1 for the hard-
sphere solvents indicated in Fig. 3, except P6. Fsol is shown for
configurations along the line of close-packed helices with a focus
on the turn-to-turn distance limited regime (Rh > R�h). In the
curvature limited regime (Rh < R�h) the values �F�str, given in the
table, are reached.
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