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We show that the density matrix renormalization group can be used to study magnetic ordering in two-
dimensional spin models. Local quantities should be extrapolated with the truncation error, not with its
square root. We introduce sequences of clusters, using cylindrical boundary conditions with pinning fields,
which provide for rapidly converging finite-size scaling. We determine the magnetization for both the
square and triangular Heisenberg lattices with errors comparable to the best alternative approaches.
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Two-dimensional (2D) quantum lattice systems studied
in condensed matter physics can be divided into two types:
those with a sign problem in quantum Monte Carlo (QMC)
simulations and those without one. This is because recent
developments in QMC calculations [1–3] have enabled
remarkably accurate large-scale studies of the latter sys-
tems, such as the square-lattice Heisenberg model (SLHM)
[4]. In contrast, the former systems, such as the triangular
lattice Heisenberg model (TLHM) and other models with
geometric frustration, are often the subject of controversy
even regarding questions of what type of order, if any, is
present. For the TLHM, it is only recently that the rough
agreement between several theoretical [5] and numerical
[6–8] methods has made a convincing case that the model
has three-sublattice, noncollinear 120� order.

The density matrix renormalization group (DMRG) [9]
is not subject to the sign problem, it has an error which can
be systematically decreased by increasing m, the number
of states kept per block, and it is extremely accurate for
one-dimensional systems. For 2D systems, the value of m
needed in order to achieve a fixed accuracy, while weakly
dependent on the system length Lx, grows exponentially
with the width Ly. This effect is not immediately disastrous
because the 1D accuracy is so high; systems with widths up
to Ly � 6� 8 have been studied with DMRG. Such widths
are marginally useful for finite-size extrapolations, and
even modest improvements would be useful. One such
improvement is extrapolation in the truncation error (or
discarded weight) ", which is the sum of the discarded
density matrix eigenvalues and is controlled by varying m.
The extrapolation of the energy with "! 0 can improve its
accuracy by nearly an order of magnitude [9–11].
However, for observables other than the energy, extrapo-
lation has been more problematic and is much less used.

In this Letter we show that the difficulty in extrapolating
local measurements A is due to the incorrect assumption
that the error �A� "1=2. In fact, the simplest way to
measure local quantities within DMRG makes �A analytic
in ". The resulting extrapolations perform extremely well.
A limitation of DMRG is a large loss of accuracy if
periodic boundary conditions (BCs) are used lengthwise.
To study the staggered magnetization M, we use an ap-

proach using cylindrical BCs on Lx � Ly clusters and
pinning magnetic fields. We show that with an appropriate
choice of the aspect ratio � � Lx=Ly,M scales much more
rapidly to the thermodynamic limit than in widely used
methods based on correlation functions on Lx � Ly clus-
ters with periodic BCs. Using these two improved extrapo-
lation methods, our results for M are comparable to the
best published QMC calculations [4,12] for the SLHM and
to the best series expansion [8] and Green’s function
Monte Carlo [7] results for the TLHM.

We consider the S � 1
2 Heisenberg model

 H � J
X

hiji

~Si � ~Sj (1)

with J � 1 on square and triangular lattices, where hiji
denotes nearest neighbor sites. We study Lx � Ly systems
with periodic BCs in the y direction, and open BCs with
pinning in the x direction. For the SLHM we consider both
the standard orientation of the lattice and one tilted by 45�.
In all cases we apply a staggered pinning field correspond-
ing to infinite pinning on the edges of an auxiliary �Lx �
2	 � Ly system, e.g., 
0:5 for the standard orientation
SLHM. Since our DMRG program conserves total Sz, for
the TLHM it is not possible to pin all three sublattices
simultaneously. Instead, we only pin in the z direction,
pinning one sublattice (pointing down), with the other
two free to rotate in a cone. Thus we expect one sublattice
to exhibit hSzi � �M, and the other two �M=2.

We focus on the resulting on site magnetization MC �
jhSzij in the center column of the system. For any fixed
� � Lx=Ly, MC approaches its thermodynamic limit M0

as Lx; Ly ! 1. For Lx � Ly, the system looks more one
dimensional and we expect MC to approach M0 from
below. For Ly � Lx, the strong pinning dominates and
we expect an approach from above. We utilize intermediate
� to accelerate the convergence with system size.

First we discuss the convergence of DMRG with ". If the
truncation of density matrix states were made starting from
the exact ground state  0, then the truncation error and
energy error would vary as (to leading order) "� �E�
j� j2, where � �  �  0, and  is the new approximate
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ground state [13]. For measurements of an operator Â other
than the Hamiltonian, standard variational arguments im-
ply an error proportional to h� jÂj 0i, and thus / "1=2.

Consider the special situation where  is the lowest
energy state within an incomplete basis B. Let C be the
complement of B. Note that  is an exact eigenstate in the
complete basis of a modified Hamiltonian in which the off-
diagonal terms connecting B and C are set to zero. Label
these coupling terms �V. Assuming  is close to the true
ground state  0, �V is small, and one can consider �V as
a small perturbation. The leading term in � , neglecting
energy denominators, is / �V , which is in C.

Now consider a change of basis for C, negating each
basis function. This sends �! ��, but leaves the energy
unchanged. Thus we expect analytic behavior for E��2	.
For the exact ground state  0, the change of basis switches
the sign of the C coefficients. The truncation error " is
(ideally [13]) the sum of the squares of these coefficients,
and is therefore also an even function of �. Consider an
operator Âwhich is block diagonal within the B=C split. Its
expectation value would also be independent of the change
of basis, and thus an analytic function of �2.

Within DMRG, the seemingly restrictive assumption
that the operator Â is block diagonal is easily satisfied for
a local operator, such as Sz. Consider one particular
DMRG step, and consider measuring an Â which acts
only on one or both of the central two sites, not part of
the truncated left and right blocks. As part of the DMRG
step, one finds the ground state  within the current re-
duced basis (B). Applying Â on  creates a state which is
exactly represented within this basis; therefore Â is block
diagonal. At this step only a few operators can be measured
accurately, but as the algorithm sweeps through the lattice
all local operators can be measured.

To utilize this analytic behavior in an extrapolation, one
assumes that increasing m in successive sweeps corre-
sponds to decreasing �. (More accurately, increasing m
moves states with large couplings from C to B.) Then, both
the energy and central-site operators should have polyno-
mial (i.e., analytic) dependence on the truncation error, and
one can expect well-behaved polynomial extrapolations.

In Fig. 1, we show the behavior of hSzi as a function of "
for two modest sized systems where essentially exact
results could be obtained. The results show no signs of
nonanalytic behavior as "! 0, and are fit nicely with a
quadratic form. Using results from a number of similar
modest sized systems we have devised a simple empirical
‘‘recipe’’ to reliably extrapolate to "! 0 for a local quan-
tity such as hSzi, as is already commonly done with the
total energy. Specifically, we utilize only the most accurate
decade of data available, and fit it with a cubic polynomial.
The error bars assumed for the purpose of the fit are
proportional to ". The extrapolation can be checked by a
fourth order fit, or a quadratic fit over a smaller range. If
these extrapolations agree well, the extrapolation is judged
acceptable and we take as a rough error estimate the

empirical parameter 0.2 times the size of the extrapolation
from the last data point.

The implications of the analytic behavior in " are sig-
nificant: local measurements for finite " are more accurate
than previously thought, and the extrapolation "! 0 im-
proves results and provides error estimates.

We now turn to finite-size effects. Previous QMC studies
of the magnetization M have utilized correlation functions
measured in periodic L� L systems, and extrapolation in
1=L for the quantity M2

0. The leading term varies as 1=L
with a substantial coefficient. The expansion in 1=L for
the periodic L� L SLHM is known in detail from chi-
ral perturbation theory, allowing Sandvik to determine
M0 � 0:3070�3	 using only systems up to L � 16 [4].
For the TLHM, chiral perturbation results are not available,
and less robust QMC methods must be used, making
extrapolation to L! 1 much more difficult. For example,
Capriotti et al. extrapolated Green’s function Monte Carlo
results with M2 � 0:13 for L  10 down to M2

0 � 0:04 for
L! 1 to obtain M0 � 0:205�10	. Other estimates [5]
range as high as M0 � 0:266.

The leading 1=L scaling of the order parameter M in the
2D Heisenberg systems is universal and is determined by
the long-wavelength spectrum of the problem, namely, by
the massless spin waves [14]. We have analyzed the effect
of the aspect ratio � � Lx=Ly on the scaling for pinned
cylindrical and for periodic clusters using both finite-size
scaling within an effective � model and finite-size spin-
wave theory (FSSWT). A key conclusion from both meth-
ods is that the coefficient in the 1=L correction to M
depends on � and, for special aspect ratios �c, vanishes,
leaving corrections of order O�1=L2	. The two methods
agree exactly on the values of �c for nontilted and tilted
square-lattice clusters: for periodic systems, �c � 7:0555,
while for cylindrical systems, for MC in the middle of the
cluster, �c � 1:7639, almost exactly 4 times smaller. The
values of �c are controlled by the cluster geometry and
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FIG. 1. hSzi for a central site versus the truncation error ",
normalized to the " � 0 result. The solid lines are quadratic fits.
The 12� 3 cluster, with true dimensions 6

���
3
p
� 3, rotated 90�,

is shown. The length of the arrows is proportional to hSzi, and
pinning fields were �0:25;�0:25; 0:5.
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BCs through the placement of the allowed wave vectors
near the zeros of spin-wave energy: for periodic SLHM
systems, one has k � �2�i=Lx; 2�j=Ly	, whereas for the
cylindrical-pinned geometry case, k � ��i=�Lx �
1	; 2�j=Ly�. The factor of 4 improvement in the aspect
ratio for the latter is due to the shift by �=�Lx � 1	 away
from the ordering vector. The effective-model analysis
determines the 1=L correction term up to an unknown
factor, but the zero crossing is independent of it.

The FSSWT produces approximate results for M �
jhSzij for all sites. Figure 2(a) shows M�x	 vs x for two
representative clusters. Because of suppression of the long-
wavelength spin fluctuations the magnetization is en-
hanced near the boundary. The asymptotic falloff of the
magnetization away from the edge can be shown to be
M�x	 � M0 � a=x. These FSSWT results are in a good
agreement with the DMRG data for the SLHM in the
nontilted clusters shown in Fig. 3(a). One can see that
already for the Lx � 6 clusters MC provides a good esti-
mate of the asymptotic 2D value M0 when the aspect ratio
is near � � 2.

Figures 2(b) and 3(b) show MC vs 1=Ly for cylindrical
BCs, obtained by the FSSWT and DMRG, respectively.
Also shown are the results for the L� L systems with
periodic BCs, in Fig. 2(b) by FSSWT from this work and
from Ref. [15], and in Fig. 3(b) by QMC calculations using
standard correlation function methods, Ref. [4]. Clearly,
even for the same aspect ratio, the finite-size effects in the
cylindrical BC clusters are 3–4 times smaller than in the
periodic systems. The FSSWT agrees precisely with the
effective theory on the value of �c � 1:7639 for eliminat-
ing the leading 1=L term. This is in a good qualitative
agreement with the DMRG data, but the DMRG data seem
to indicate consistently higher values of�c � 1:9. We have
also performed QMC calculations [16] for the SLHM with

periodic BCs. With the largest clusters up to 20� 160 the
‘‘magic’’ aspect ratio is �c � 7:5, also higher than the
effective theory value 7.0555. While we cannot exclude a
change in the behavior on larger lattice sizes, this seems to
indicate some insufficiency of the effective theory analysis.

In Fig. 3(b) DMRG results for MC are shown. For the
largest system, 20� 10, up to m � 2400 states were kept,
with the run taking about 40 h single-core time on a
2.6 GHz Mac Pro. This yielded a truncation error of order
10�6, a variational energy with an accuracy of a part in 104,
an extrapolated energy accurate to a few parts in 105, and
an uncertainty in MC of about 0.0007 [17].

More accurate DMRG results can be obtained for 45�

tilted lattices [18], allowing more detailed fits. For ex-
ample, on a 32=

���
2
p
� 8

���
2
p

system, the energies and MC
were roughly 2 times more accurate than for the 20� 10
nontilted system, and the finite-size effects were smaller.
The improved behavior comes from how DMRG sees the
width of the system (the number of sites on the boundary of
the left or right block) versus the physical dimension—the
greater spacing by a factor of

���
2
p

in the tilted case accounts
for the improvement. In Fig. 4(a) we show results for MC
vs � � Lx=Ly for various Ly near the value � � 1:925
where the curves nearly intersect. The intersection of such
curves as Ly ! 1 provides a simple determination of both
�c and M0. The resulting value of �c, based on the avail-
able sizes, is somewhat larger than that given by FSSWT
and the continuum analysis. The values of � are discrete
because we have integral lattice dimensions. Performing a
least squares fit of these data to the expression

 MC��; Ly	 � M0 � a��� �c	=Ly (2)

we obtain M0 � 0:3067, �c � 1:9252, and a � �0:1580.
In Fig. 4(b), the solid lines are based on this fit; the points
for � � 1:9 and � � 1:925 are obtained from linear ex-
trapolation along the lines shown in Fig. 4(a). The result for
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FIG. 2 (color online). (a) FSSWT results for the SLHM show-
ing the position dependence of the magnetization M�x	. M0 �
0:3034 is the spin-wave theory bulk value. (b) MC (M) vs 1=Ly
by FSSWT for periodic BCs (upper two sets) and cylindrical
BCs (lower sets). In Ref. [15] M was extracted from the
correlation function, and so differs in (1=L2) terms.
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FIG. 3 (color online). (a) DMRG results for M�x	 vs x for the
SLHM. The line labeled ‘‘2D’’ and the solid diamond are the
QMC L! 1 extrapolated result, M0 � 0:3070�3	 [4]. (b) MC
vs 1=Ly results from DMRG for the SLHM. The upper two
curves are periodic QMC � � 1 results for M [4].
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M0 is consistent with, and of comparable accuracy to, the
best QMC result.

For the triangular lattice, we have studied a variety of
clusters and pinning fields; these results consistently sup-
ported that the triangular system has the three-sublattice
120� order found in other studies. The cluster orientation
shown in Fig. 1 seems to be the most convenient and
efficient for a DMRG analysis to obtain M0. Our DMRG
results for comparable lattice sizes are only slightly less
accurate than for the SLHM.

Unfortunately, the finite-size analysis for the TLHM is
much less accurate. The allowed widths in the preferred
geometry must be multiples of 3, and our results for Ly �
12 are of low accuracy, leaving only Ly � 3; 6; 9.
Currently, we do not have comparable analytical guidance,
such as predictions for the optimal aspect ratio, for the
triangular case. In Fig. 5 we show results for the TLHM
with this orientation and also for lattices rotated by 90�.
The scaling behavior appears to be quite similar to the
SLHM, but with a somewhat smaller �c � 1:6–1:7.
Assuming this behavior, we estimate M0 � 0:205�15	,

consistent with recent QMC calculations and series expan-
sions [7,8]. The results for the rotated clusters seem to have
larger finite-size effects and are less useful.

In conclusion, we have developed improved techniques
for studying ordering in 2D lattice systems using DMRG,
making DMRG competitive with QMC calculations and
series expansions for the SLHM and TLHM systems.
These techniques include proper scaling of local quantities
with the discarded weight, and the use of nontraditional
cluster geometries and BCs to improve finite-size scaling.
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