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We have applied the quantum Monte Carlo method and tight-binding modeling to calculate the binding
energy of biexcitons in semiconductor carbon nanotubes for a wide range of diameters and chiralities. For
typical nanotube diameters we find that biexciton binding energies are much larger than previously
predicted from variational methods, which easily brings the biexciton binding energy above the room
temperature threshold.
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Size-dependent optical excitations in nanostructures are
at the heart of fundamental studies as well as conceivable
applications [1]. Carbon nanotubes (CNTs) make no ex-
ception, showing very sensitive electronic and optical
properties to the atomic structure and spanning a wide
range of wavelengths [2]. The stability of the excitonic
states, neutral or charged optically excited electron-hole
complexes, is determined by their binding energy with re-
spect to thermal fluctuations. In quasi-1D systems, the
binding energy can be much larger than in systems of
higher dimensionality. In inorganic semiconductor hetero-
structures, for instance, the exciton binding energy Exb is
substantially larger than [3–5] the binding energy 4R in a
strictly 2D system [6], where R is the Rydberg energy of
the host material. Analogously, the biexciton binding en-
ergy Exxb of two electron-hole pairs, optically excited in a
two-photon process, is not limited [7,8] to its 2D value of
0:77R [9,10].

Since CNTs are quasi-1D systems, obtained by rolling
up a graphene sheet [11], they are characterized by rather
large binding energies [12,13], analogously to conjugated
polymers [14,15]. On the other hand, in CNTs one expects
strongly diameter-dependent binding energies. Indeed, in
addition to the increase of the ratio Ex�xx�b =R with decreas-
ing diameter, due to the transition from a quasi-2D system
to a quasi-1D system, also electron and hole effective
masses, which determine R, change with the CNT diame-
ter. Furthermore, due to the involved energy scales, in
CNTs not only excitons but also biexcitons might be stable
against thermal fluctuations at room temperature; also, the
energy separation can be larger than the linewidth, and
optical detection of biexcitons should be possible. Contrary
to inorganic semiconductors and semiconductor nanostruc-
tures, where biexcitons have received considerable inter-
est, there is only very little work devoted to biexcitons in
CNTs. Following the pioneering work of Ando [16], the
exciton binding energy has been calculated for several
nanotubes, with different diameter and chirality, both
within ab initio approaches [17,18] and semiempirical
methods [19–24]. On the contrary, the biexciton binding

energy, which is presently not accessible to the more
accurate first principles methods, has been computed
only via an approximate variational approach [25].

In this Letter we use the quantum Monte Carlo (QMC)
method to calculate the exact (dimensionless) binding
energy Exxb =R of biexcitons confined to the surface of a
cylinder of diameter D. We find that the biexciton is much
more stable and its binding energy much larger than esti-
mated from variational methods, particularly for inter-
mediate to large D=a�B. Assuming homogeneous dielec-
tric screening and tight-binding estimates for the CNT
effective masses, we also estimate Exxb for several families
of CNTs. We find that for realistic values of the dielectric
constant, Exxb can be comparable or larger than kBTroom

even for the larger CNT diameters.
Let us consider electrons and holes confined to the

surface of an infinitely long cylinder of diameter D, as
indicated in Fig. 1. It is convenient to use dimensionless
exciton units, where @ � 1, and in which masses are mea-
sured in units of the reduced electron-hole mass �, dis-
tances in units of the effective Bohr radius a�B � ��=��aB,
and energies in units of the effective Rydberg R �
e2=�2�a�B�. With the approximation of equal electron and
hole effective masses [19,21,26], the biexciton Hamilton-
ian in dimensionless units reads

FIG. 1 (color online). Biexciton complex on a cylindrical sur-
face. x is the circumferential and z the longitudinal direction of
the tube with diameter D � 2R. Particles 1, 2 (electrons) and a,
b (holes) are confined to the surface and form a spin-singlet state.
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Here, r1, r2 (ra, rb) are the positions of the two electrons
(holes), and rij is the distance between particles i and j. We
choose electrons (holes) with opposite spin orientations
and consider the optically active spin-singlet biexciton
ground state.

Variational QMC.—In the following we sketch our nu-
merical approach. In addition to exact QMC calculations,
to be discussed below, we have performed variational
QMC (VQMC) calculations. We have exploited the (un-
normalized) Hylleraas-Ore trial wave function [27] in a
slightly modified version
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Here, the sij’s are relative distances scaled by variational
parameters. As we employ cylindrical coordinates, the
expression for sij reads
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where x and z are oriented along the circumference and the
symmetry axis of the cylinder, respectively (see Fig. 1).
Variational parameters q and k allow for different scaling
for both directions [21]. � is an additional variational
parameter determining the strength of the coupling be-
tween the two excitonic complexes of a biexciton, where
� � 1 corresponds to two separate excitons, and for� � 0
there is equal binding within all electron-hole pairs. The
variational parameters q, k, and � have to be determined
such that the total energy ET � h�jHj�i=h�j�i becomes
minimized.

Quite generally, after separation of the biexciton center-
of-mass motion, the calculation of ET involves sixfold
integrals, which constitutes a formidable computational
task. The calculation of ET is performed by the VQMC
approach [28], whose main elements can be summarized as
follows: since the trial wave function (2) of the optically
active spin-singlet biexciton ground state is always positive
(thereby avoiding the fermionic sign problem), it can be
represented by an ensemble of ‘‘walkers,’’ each one char-
acterized by the particle positions r1, r2, ra, rb. Starting
from a suitable initial configuration, one generates a
Markov chain for the walkers where the probability for a
specific configuration is given by �2

T�r1; r2; ra; rb�. Upon
sampling of the ‘‘local energy’’ EL � H�T=�T one then
obtains the energy ET associated to the trial wave function
[28]. Let us denote the ensemble of walkers with
��r1; r2; ra; rb; t�, where t is a fictitious time. The Fokker-
Planck equation, which in our dimensionless units reads
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in time-discretized form defines a scheme to proceed from
a configuration ��t� to ��t� �t� according to the drift and
diffusion process given on the right-hand side [29]. Thus,
the VQMC simulation consists of the three main steps of
(i) initialization of the ensemble of walkers, (ii) drift and
diffusion of all particles in each walker according to
Eq. (4), and (iii) sampling of the local energy EL once
the stationary distribution is reached.

Guide Function QMC.—A slight variant of the VQMC
approach allows for the exact solution of the Schrödinger
equation. Let � � � ��T denote a function composed of the
exact wave function � and the guide function ��T . The
Fokker-Planck-type equation
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in time-discretized form again defines a scheme that can be
solved by means of Monte Carlo sampling. It can be easily
proven [28] that under stationary conditions Eq. (5) re-
duces to the exact Schrödiger equation. Thus, once the
invariant � is obtained the exact wave function is at
hand. We represent � by an ensemble of walkers, and
account on the right-hand side of Eq. (5) for the first
term through drift and diffusion and for the second term
through a Monte Carlo branching with probability p �
exp���EL � E��t	. Depending on the value of p, the
walker dies, survives, or gives birth to other walkers [28].
In the simulation the energy E is chosen such that the total
number of walkers remains approximately constant and a
constant distribution � is reached. This invariant distribu-
tion and E then determine the biexciton wave function and
energy, respectively. Therefore, the main steps of this so-
called guide function QMC approach are (i) initialization
of the ensemble of walkers, (ii) drift and diffusion of all
particles in each walker, (iii) branching of the walkers, and
(iv) sampling of the wave function once the stationary
distribution is reached.

Technically, one needs to choose �t sufficiently small to
allow for the separate drift-diffusion and branching steps
accounting for the two different terms on the right-hand
side of Eq. (5) [30]; ��T has to be chosen such that the local
energy EL in Eq. (5) remains finite when two particles in a
walker approach each other. While this is guaranteed for
the true wave function, ��T is usually taken as a Jastrow-
type wave function with the correct cusp condition [28,31].
In practice we use ��T � �T with q � k � 1

4 , � � 0. We
finally emphasize that both the VQMC and the exact QMC
simulations can be applied in a straightforward manner to
excitons, in which case the trial wave function is of the
form �T�r1; ra� � exp��s1a	 and ��T � exp��2r1a	,
respectively.

Results.—In the inset of Fig. 2 we show the dimension-
less total energies Ex and Exx with respect to the band gap
(Eg � 0), calculated exactly by the guide function QMC
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method. As can be seen, the exciton energy Ex shows the
correct behavior at infinite diameter, that is the 2D limit,
where it converges to �4R [6], while it is strongly red-
shifted as the diameter is decreased due to the larger
binding of the electron-hole pair, showing the transition
from a quasi-2D to a quasi-1D system. Analogously, the
biexciton energy Exx redshifts as a result of the increased
interaction of the two electron-hole pairs.

In order to investigate the stability of the biexciton
complex with respect to the formation of separated exci-
tons, we show in Fig. 2 the exact biexciton binding energy
Exxb for arbitrary dimensionless diameter D=a�B, along with
the VQMC results and the fitting function of Ref. [25]. The
biexciton results to be stable (Exxb > 0) at any diameter, and
it shows the expected limiting behavior at infinite diameter,
that is the 2D limit 0:77R [9]. The binding energy in-
creases with decreasing diameter, showing again the tran-
sition from a quasi-2D to a quasi-1D system. As can be
noted, both variational results severely underestimate the
binding energy in the whole range of diameters except for
very small values. Moreover, they do not show the correct
2D limiting behavior. Such a shortcoming of Hylleraas-
Ore-type wave functions is in agreement with correspond-
ing calculations for two-dimensional quantum wells
[9,32]. To give a rough estimate, for typical CNT diameters
of D � 0:8–1:2 nm and using the dielectric constant � �
3:5 given in Ref. [25] the excitonic units are a�B �
2:5–5:5 nm and R � 0:04–0:08 eV. This brings Exxb into
the 0.06–0.12 eV range, which is 1.5–2.5 larger than the
variational results reported in Fig. 2.

In order to calculate exciton (x) and biexciton (xx)
absolute energies explicitly, we assume that excitonic ef-
fects (x or xx binding) can be decoupled from band-
structure effects. We can therefore write the energies as

 E� � f��D=a�B�R�D�; (6)

where � 2 fx; xxg and f��x� is the exact dimensionless
excitonic or biexcitonic energy shown in the inset of Fig. 2.
We provide below a fitting function for f��x�, which allows
us to calculate absolute binding energies for an arbitrary
diameter,

 f��x�� �a�x
�1�b�x

�2�c�x
�3�exp��d�x��f

�
2D; (7)

where f�2D is the correct 2D limit, and a�, b�, c�, d� are the
fitting parameters summarized in Table I. The quality of
the fit is proven by calculating the biexciton binding energy
with 2fx � fxx, see solid black line in Fig. 2.

We calculate the Rydberg energy R from the tight-
binding model of Ref. [33], which provides explicit fitting
functions [Eq. (2) of Ref. [33] ] for the electron and hole
effective masses of semiconducting CNTs of arbitrary
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FIG. 2. Biexciton binding energies as a function of CNT
diameter, calculated with exact guide function QMC (black
dots) and VQMC method (gray triangles). Statistical error bars
of both methods are shown. The solid, black line is the result of
using our fitting functions in Eq. (7). Inset: total energy of
exciton and biexciton. Note that here Ex � �Exb.

TABLE I. Fitting parameters in Eq. (7) for exciton (x) and
biexciton (xx) energies in dimensionless exciton units.

a� b� c� d� f�2D

x �2:62 0.3024 �0:015 04 2.795 �4:00
xx �5:08 0.56 �0:028 32 2.345 �8:77
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FIG. 3. Exciton (a) and biexciton (b) binding energies as a
function of CNT diameter and chirality. Inset: biexciton energies
(�Exx) in absolute units. The labels indicate the (2n�m)
families, where (n, m) are the chiral indices of the NT.
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chirality and diameter. For the dielectric screening entering
R, we adopt the simplest screening model, in which all
Coulomb interactions are reduced to an effective static
dielectric constant �, following current literature [13,19–
21]. This approximation, which proved to be successful in
comparison with both experiments [34] and ab initio cal-
culations [23], is particularly suitable for embedding media
with large dielectric constant, i.e., � * 3, where the dielec-
tric response is dominated by that of the medium rather
then by the CNT polarizability [24].

Figure 3 shows Kataura-like plots for both exciton (a)
and biexciton (b) binding energies in absolute units, in the
0.5–1.5 nm diameter range, calculated from Eq. (6) and for
different values of �. As expected, both x and xx energies
decrease with increasing tube diameter, as follows from the
behavior of f��x�. The chirality effects, entering through
the effective masses, introduce a modulation in the binding
energy dependence on the diameter, significantly spread-
ing out the binding energies for the range of diameters
considered. As shown in Fig. 3(b), however, the biexciton
binding energy is predicted to be above the kBTroom thresh-
old (26 meV) even for the largest CNTs.

In summary, we have performed QMC calculations of
the singlet optically active biexciton binding energy for
CNTs of arbitrary diameter and chirality. The biexciton has
been found to be always stable at room temperature in
typical dielectric environments. We have also developed a
scheme which allows us to calculate the exact exciton and
biexciton binding energies through a simple fitting func-
tion approach, which includes the strong correlation effects
exactly and the band-structure effects within a tight-
binding approach.
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