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We investigate the entanglement between a spin and its environment in impurity systems which exhibit
a second-order quantum phase transition separating a delocalized and a localized phase for the spin. As an
application, we employ the spin-boson model, describing a two-level system (spin) coupled to a sub-
Ohmic bosonic bath with power-law spectral density, J �!� / !s and 0< s< 1. Combining Wilson’s
numerical renormalization group method and hyperscaling relations, we demonstrate that the entangle-
ment between the spin and its environment is always enhanced at the quantum phase transition resulting in
a visible cusp (maximum) in the entropy of entanglement. We formulate a correspondence between
criticality and impurity entanglement entropy, and the relevance of these ideas to nanosystems is outlined.
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Quantum mechanical systems can undergo zero-
temperature phase transitions upon variation of a nonther-
mal control parameter, where the order is destroyed solely
by quantum fluctuations [1]. In this Letter, we reexplore
second-order quantum phase transitions in impurity mod-
els which involve a spin coupled to a dissipative environ-
ment and which display both a localized and a delocalized
phase for the spin [2]. To better characterize those quantum
phase transitions, we are prompted to examine the entropy
of entanglement shared between the spin and its environ-
ment [3,4]. As a concrete example, we employ the sub-
Ohmic spin-boson model [2] describing a two-level system
with environmental dissipation (stemming from a lossy
RLC transmission line [5] or from 1=f noise [6]) and
which allows a direct measurement of the entropy of en-
tanglement. We demonstrate that the ground state is
strongly entangled at the quantum phase transition. The
analysis of the enhancement of entanglement near a quan-
tum critical point is of great current interest [4,7,8].

More precisely, we show that those second-order impu-
rity quantum phase transitions are always accompanied by
a maximum (cusp) in the entropy of entanglement and that
the latter exhibits universal scalings. The entanglement
entropy will also allow us to establish important connec-
tions between impurity entanglement, quantum decoher-
ence (or strong reduction of the quantum superposition of
the two-spin states) when approaching the phase transition
from the delocalized phase, and rapid disentanglement in
the localized or classical phase for the spin (the spin is
rapidly frozen in one classical state due to dissipation). Our
phase diagram is shown in Fig. 1.

The simplest example of a quantum impurity coupling to
a bath is the paradigmatic spin-boson model [9]:
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where �x and �z are Pauli matrices and � is the tunneling

amplitude between the states with �z � �1. In the follow-
ing, we will assume that �> 0 such that h�xi> 0. Here,
Hosc is the Hamiltonian of an infinite number of harmonic
oscillators with frequencies f!ng, which couple to the spin
degree of freedom via the coupling constants f�ng. The
heat bath is characterized by its spectral function, J �!� �
�
P
n�

2
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c !s, where !c represents a
cutoff energy and the dimensionless parameter �measures
the strength of the dissipation.

The essential physics contained in this model is the
competition between the amplitude for tunneling between
the two-spin states (leading to a ‘‘delocalized’’ phase) and
the effect of the bath which tends to ‘‘localize’’ the system
in one or other of the spin states.

The special value s � 1 represents the case of Ohmic
dissipation, where the analogy with the Kondo model
applies and a quantum Kosterlitz-Thouless (KT) transition
separates the delocalized phase at small� and the localized
phase at large � [9]. The phase transition occurs at �c �
1�O��=!c� [10]. The delocalized region corresponds to
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FIG. 1 (color online). Unification of entanglement and criti-
cality at a second-order impurity quantum phase transition.
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the antiferromagnetic Kondo model with a Fermi-liquid
ground state while the localized region corresponds to the
ferromagnetic Kondo model where the spin is frozen in
time. The spin magnetization h�zi jumps by a nonuniversal
amount �1�O��=!c� at the KT transition (for � � 0�)
[11]. The entropy of entanglement also contains valuable
information; it shows a plateau at maximal entanglement
for� � 1=2 in the delocalized phase and it drops (roughly)
to zero at the KT transition [12–14]. Note that this plateau
exemplifies the intimate connection between maximal en-
tanglement and quantum decoherence since � � 1=2
marks the dynamical crossover from damped oscillatory
to overdamped behavior [9].

Below, we rather focus on the sub-Ohmic spin-boson
model (0< s < 1). A quantum critical point �c��� still
separates the localized (�< �c) and the delocalized phase
(�> �c) where �c ! 0 when �! 0. A second-order
phase transition has been well-established for all 0< s<
1 using Wilson’s numerical renormalization group (NRG)
method [15,16] and through an analogy to classical spin
chains [17] (nevertheless, when interactions become too
long-ranged in time, i.e., for s < 1=2, the quantum-
classical mapping fails [2]). The longitudinal spin magne-
tization h�zi is generally used to characterize the phases
and phase transitions [18]. On the other hand, the quantum
critical point is an ‘‘interacting’’ fixed point for all 0< s<
1 which motivates us to examine the entanglement between
the spin and its environment thoroughly. When a bipartite
quantum system AB is in a pure state j i, the entanglement
between subsystems A and B is unambiguously described
by the von Neumann entropy or entanglement entropy E,
which is calculated from the reduced density matrix �A or
�B, �A�B� � TrB�A�j ih j [3]:

 E � �Tr��Alog2�A� � �Tr��Blog2�B�: (2)

When either subsystem A or B is a spin- 1
2 system, the

entropy of entanglement E can be rewritten as [4,12–14],
E � �p�log2p� � p�log2p�, where p� are given by

p� � �1�
�����������������������������
h�xi

2 � h�zi
2

q
�=2; note that h�yi � 0 be-

cause the Hamiltonian HSB is invariant under �y ! ��y.
Since exact analytical methods (such as Bethe ansatz)

are restricted to the Ohmic case [12,19], we employ the
bosonic NRG to compute the entanglement entropy be-
tween the spin and its environment. We follow the same
procedure as in our Ref. [16]. In order to ensure the
convergence of the results in the localized phase, we
have used the NRG parameters � � 2 (logarithmic discre-
tization), Ns � 150 (lowest energy levels kept), and Nb �
8 (boson states; except the 0th site for which Nb0 � 500).
The results converge for N 	 30 sites (and we keep until
40 sites). In NRG calculations, we fix !c � 1 and � is
normalized to !c. We will also apply the following scaling
ansatz for the impurity part of the free energy,

 F � Tf�j�� �cj=T
1=�; �T�b�; (3)

to relate the critical exponents associated with E to other
critical exponents such as the correlation length exponent
�. Even though the temperature T is introduced for the
scaling analysis the entanglement entropy E (which is
defined for a pure state) is evaluated at zero temperature.
The crossover from the quantum critical regime to one or
other of the stable regimes, defines the energy scale �
 in
Fig. 1 that vanishes at �c as �
 / j�c ��jb�, and for the
spin-boson model we obtain b � �1� s�=2. The ansatz (3)
is well justified when the fixed point is interacting [18]; for
a Gaussian fixed point the scaling function would also
depend upon dangerously irrelevant variables.

Note that the entanglement entropy E is different from
the impurity entropy Simp which is rather evaluated as
entropy of the system with impurity minus entropy of the
bath alone. The delocalized phase obeys Simp�T ! 0� � 0
since the ground state is nondegenerate while the localized
phase yields Simp�T ! 0� � ln2. On the other hand, E goes
rapidly to zero in the localized phase (product state) and is
finite in the delocalized phase (entangled state); however,
E! 0 when �� !c. Our NRG data of Figs. 2 and 3 show
that E exhibits a cusplike behavior (maximum) at the phase
transition. This is distinguishable from the Ohmic case
where jh�zij � 1�O��=!c� at the KT transition which
irrefutably results in E! 0 [13,14].

In fact, there is a simple way to conceive that the
maximum of E coincides with the quantum phase transi-
tion for the sub-Ohmic situation. In the delocalized phase,
since the longitudinal magnetization h�zi � 0 at � � 0:
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This expression is valid at �c. Since, 	? � @h�xi=@� and
h�xi are positive quantities, @E=@�< 0 in the delocalized
phase. In the localized phase, E is controlled by the finite
longitudinal magnetization and by the susceptibility �	z �
�@jh�zij=@�> 0 (see inset in Fig. 2) [20]:
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FIG. 2 (color online). NRG results for the entanglement at
T � � � 0 in the sub-Ohmic case s � 0:5, which can be realized
through a qubit coupled to an RLC transmission line; the arrow
marks the position of the quantum phase transition. The relevant
susceptibilies �	z and 	? are presented in insets.
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Thus, @E=@�> 0 in the localized phase. Equations (6)
and (7) imply that the entanglement entropy is maximum at
the phase transition. Zero-temperature impurity critical
points can show a residual ‘‘fractional’’ entanglement en-
tropy (which depends on the dissipation strength �).

Let us emphasize at this point that the case s � 1=2 is of
particular interest since it can be realized through a charge
qubit (dot) subject to the electromagnetic noise of an RLC
transmission line [5]; the mapping onto the spin-boson
model with s � 1=2 assumes frequency !� R=L,
whereas an LC transmission line would mimic the ohmic
case [19,21,22]. The entanglement entropy can be accessed
through charge and persistent current measurements, cor-
responding to h�zi and h�xi, respectively [19]. Moreover,
� represents the tunneling amplitude between the dot and
the lead or the Josephson energy of the junction and thus is
a tunable parameter. A gate can be used to control �. The
noisy charge qubit is an ideal nanocandidate to demon-
strate the existence of entanglement [12,23].

Now, we seek to demonstrate that E exhibits universal
scaling even though the entanglement is two-sided, so that
two numbers are necessary to specify E (one for each of the
two ways of approaching �c). Near �c, the transverse spin
susceptibility 	? � 2@2F=�@��2 obeys

 	?��� � 	?��c� � c�=�j�� �cj

 ; (6)

and from the free energy defined in Eq. (3), 
 � �� 2. For
the sub-Ohmic spin-boson model, one finds � � 2 for all
0< s< 1, ensuring that 	? does not diverge at the tran-
sition. Taking into account that h�xi is continuous at the
transition, Eq. (6) thus implies that E always rises linearly
for �! ��c [��c means that we approach the quantum
critical point from the delocalized (localized) region], as
confirmed by Fig. 3. Note that the coefficients c� and c�
can be different in the delocalized and in the localized

phase and this explains, for example, the jump occurring
for s � 1=2, where � � 2 (inset in Fig. 2). Through the
NRG, we also check that c� < 0, emphasizing that in the
delocalized phase 	? substantially increases at ��c , and
that 	? shows a clear singularity for 2  � < 3 or 1=3<
s  0:94. For all 0< s< 1, this strongly underlines the
duality between the enhancement of entanglement and the
strong reduction of the two-spin state quantum superposi-
tion near the phase transition.

In the localized phase, we obtain the scaling behavior:

 �	 z��� / j���cj
�1���1�s�=2 � a; (7)

here a � 0 when ��1� s�=2> 1, and we identify a �
�	z��

�
c �. For �>�c, �	z � 0. The correlation length ex-

ponent � can be obtained analytically for s! 0 and s! 1
through Renormalizations Group expansions. The analogy
with classical spin chains for s! 1 leads to [24] 1=� �������������������

2�1� s�
p

whereas at small s, one finds [2] 1=� � s. Here,
�	z diverges at ��c for s > 1=3 and � � ��1� s�=2 is the
critical exponent associated with h�zi. For �< �c and s >
1=3, from Eqs. (7) and (9), we find the relation [25]

 E��c� � E��� / j���cj
��1�s�: (8)

The decay of the von Neumann entropy E in the localized
phase is faster than linear for all s > 1=2 (Fig. 3) and the
behavior becomes strictly linear at s � 1=2, as shown in
Fig. 2. It is certainly relevant to notice the parallel between
impurity entanglement in a dissipative environment and
single-site entanglement in quantum critical spin chains
such as the anisotropic XY chain [7]. Now, we shall discuss
the scaling of E with the longitudinal field.

Integrating out the boson degrees of freedom induces a
long-range interaction in time which results in the follow-
ing term in the action [2], Sint �

R
d�d�0�z���g���

�0��z��0�, where g��� / 1=�1�s at long times. Assuming
that the dynamics of �z at the critical point is essentially
determined by Sint and by the local field � we then derive
h�zi��;�c� / j�j

1=�, with the exponent � � �1� s�=�1�
s�. This is consistent with our NRG results which predict
that the local susceptibility 	z � @jh�zij=@� at the quan-
tum critical point diverges as T�s. In the small s limit, this
leads to 1=� 	 1� 2s�O�s2�; this can be recovered by
resorting to a small s expansion [2]. Using h�xi �
�2@F=@�, we obtain h�xi��;�c� � h�xi��c� / �j�j1=

��,
with 1= �� � 2

1�s �1� 1=��. To maintain consistency with
our notation, we identify h�xi�� � 0;�c� � h�xi��c�, and
similarly for other quantities (observables).

When s is close to 1, the critical point is defined by � �
1 and �2

c � 1� s. This ensures that h�xi is small at the
transition and evolves slowly with �; at s � 1, around the
phase transition, one gets the exact expression h�xi�� �
0� � �=�!c�2�� 1�� [12]. Thus, when s is close to 1, the
dependence of E on � mainly stems from h�zi:

 E��;�c� � E��c� / �j�j
; (9)
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FIG. 3 (color online). The entropy of entanglement E, ob-
tained from NRG, displays a cusplike behavior for all 0< s <
1. For s! 1, E becomes rapidly suppressed at ��c which is a
reminiscence of the ohmic case (KT transition).
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and  � 2=� � 2�1� s�=�1� s�. In fact, since 1= ���s� �
2=��s�, this scaling relation remains valid for all 0< s <
1, as shown in Figs. 4 and 5 (inset); one can always expand
p���� � p��� � 0� �m�2=� at small � and m> 0 to
satisfy @�E���< 0 (the field � favors a product state). On
the other hand, since at small s the critical exponent �
obeys � � 1=s, one also gets 1= �� � 2=� � , which is
well verified through the NRG for 0< s  1=2 (Fig. 5).

For �>�c, the NRG results predict h�zi��;�� / � and
h�xi��;�� � h�xi��� / ��2. Thus, E decreases as �2

similar to the Ohmic case [12]. Since 2=� < 2 for all 0<
s < 1, this implies that for a given � � 0, the maximum of
entanglement occurs at the value of �>�c which lies in
the crossover between the delocalized and the quantum
critical regime (Figs. 1 and 4). The delocalized phase is
quite robust to the application of a field �. For �<�c, in
contrast we find a linear decrease of E with �.

In conclusion, we have shown that the entanglement
between a spin and its (bosonic) environment is always

enhanced at a second-order quantum phase transition. The
concept of entanglement entropy allows us to establish
important connections between impurity entanglement,
strong reduction of the quantum superposition of the
two-spin states when approaching the phase transition
from the delocalized phase, rapid disentanglement in the
localized phase, and criticality. Our theoretical results can
be tested experimentally through a charge qubit coupled to
a lossy RLC transmission line. These results may also be
relevant for heavy fermion systems which might develop a
similar ‘‘local’’ criticality [26].
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FIG. 4 (color online). E��� at s � 0:5 and � � 0:1 for several
values of �. Inset: universal scaling in the critical region for three
different values of �c (from NRG we obtain � 0:6 and the
exact exponent is  � 2=3 � 0:66 . . . ).
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